期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于KPCA特征量降维的风电并网系统暂态电压稳定性评估
1
作者 张晓英 史冬雪 +1 位作者 张琎 张鑫 《兰州理工大学学报》 CAS 北大核心 2024年第2期96-103,共8页
针对电力系统暂态电压稳定性评估中所需特征量数据庞大,影响模型训练时间,降低计算效率等问题,提出了一种基于核主成分分析方法KPCA和CPSO-BP组合的风电并网系统暂态电压稳定性评估方法.首先根据输入特征采集原始特征集,采用核主成分分... 针对电力系统暂态电压稳定性评估中所需特征量数据庞大,影响模型训练时间,降低计算效率等问题,提出了一种基于核主成分分析方法KPCA和CPSO-BP组合的风电并网系统暂态电压稳定性评估方法.首先根据输入特征采集原始特征集,采用核主成分分析算法对特征量进行非线性数据处理,提取出最优的特征集.然后将降维后的特征集作为CPSO-BP神经网络输入量进行监督学习,将得到的模型按照临界故障切除时间裕度值的大小进行分类,将分类后的样本进行风电并网系统的暂态电压稳定性评估和临界故障切除时间裕度值预测.仿真分析结果表明,对输入特征进行降维,保留重要输入特征量,剔除冗余特征量,不仅简化了模型,还提高了网络评估的准确性和计算效率. 展开更多
关键词 风电并网 核主成分分析算法 降维 CPSO-BP神经网络 暂态电压稳定性评估
下载PDF
基于改进的加速鲁棒特征算法的工件定位方法 被引量:6
2
作者 钟佩思 刘敬华 +1 位作者 刘梅 倪伟 《科学技术与工程》 北大核心 2019年第5期197-202,共6页
为了解决传统的图像处理算法识别现场获得的工件图像速度慢且匹配效果较差等问题,通过对工件图像的识别方法进行研究,提出了一种改进的加速鲁棒特征(SURF)算法可以实现工件准确、实时的定位。该算法基于加速分割测试特征检测器(FAST)对S... 为了解决传统的图像处理算法识别现场获得的工件图像速度慢且匹配效果较差等问题,通过对工件图像的识别方法进行研究,提出了一种改进的加速鲁棒特征(SURF)算法可以实现工件准确、实时的定位。该算法基于加速分割测试特征检测器(FAST)对SURF算法的特征提取方式进行改进,首先利用FAST提取特征点,然后通过SURF算法生成特征点描述子,使用主成分分析算法(PCA)对描述子进行降维。随后以欧式距离作为相似性度量进行粗匹配,再采用随机抽样一致算法(RANSAC)剔除误匹配点。最后结合双目视觉技术得到工件空间位置坐标。实验结果表明:本文提出的算法在运行时间上相比传统SURF算法减少80%,同时提高了匹配的精度。达到了准确、实时的工件定位目的。 展开更多
关键词 加速分割测试特征 加速鲁棒特征 主成分分析算法降维 双目视觉 工件定位
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部