In the reliability analysis of slope, the performance functions derived from the most available stability analysis procedures of slopes are usually implicit and cannot be solved by first-order second-moment approach. ...In the reliability analysis of slope, the performance functions derived from the most available stability analysis procedures of slopes are usually implicit and cannot be solved by first-order second-moment approach. A new reliability analysis approach was presented based on three-dimensional Morgenstem-Price method to investigate three-dimensional effect of landslide in stability analyses. To obtain the reliability index, Support Vector Machine (SVM) was applied to approximate the performance function. The time-consuming of this approach is only 0.028% of that using Monte-Carlo method at the same computation accuracy. Also, the influence of time effect of shearing strength parameters of slope soils on the long-term reliability of three-dimensional slopes was investigated by this new approach. It is found that the reliability index of the slope would decrease by 52.54% and the failure probability would increase from 0.000 705% to 1.966%. In the end, the impact of variation coefficients of c andfon reliability index of slopes was taken into discussion and the changing trend was observed.展开更多
Price discovery is one of the main functions of stock index futures.Using the daily closing prices of the CSI 300 index and its index futures from April 2010 to April 2012,this paper applies a vector error correction ...Price discovery is one of the main functions of stock index futures.Using the daily closing prices of the CSI 300 index and its index futures from April 2010 to April 2012,this paper applies a vector error correction model(VECM)and an impulse response function to conduct an empirical analysis on the price discovery function of index futures in China.This paper has the following four findings:(1)a solid cointegration relationship between the CSI 300 index and its index futures exists in the long run;(2)when prices deviate from the longterm equilibrium,the stock index reverses weakly,while the reversal of index futures is much stronger;(3)the daily lead-lag relationship between the prices of the CSI 300 index and its index futures contracts is not significant in the short run;()shocks from the spot market have a lasting impact upon the futures market,but not vice versa,due to the limited short-term adjustment ability of the spot market.展开更多
The accuracy of predicting the Producer Price Index(PPI)plays an indispensable role in government economic work.However,it is difficult to forecast the PPI.In our research,we first propose an unprecedented hybrid mode...The accuracy of predicting the Producer Price Index(PPI)plays an indispensable role in government economic work.However,it is difficult to forecast the PPI.In our research,we first propose an unprecedented hybrid model based on fuzzy information granulation that integrates the GA-SVR and ARIMA(Autoregressive Integrated Moving Average Model)models.The fuzzy-information-granulation-based GA-SVR-ARIMA hybrid model is intended to deal with the problem of imprecision in PPI estimation.The proposed model adopts the fuzzy information-granulation algorithm to pre-classification-process monthly training samples of the PPI,and produced three different sequences of fuzzy information granules,whose Support Vector Regression(SVR)machine forecast models were separately established for their Genetic Algorithm(GA)optimization parameters.Finally,the residual errors of the GA-SVR model were rectified through ARIMA modeling,and the PPI estimate was reached.Research shows that the PPI value predicted by this hybrid model is more accurate than that predicted by other models,including ARIMA,GRNN,and GA-SVR,following several comparative experiments.Research also indicates the precision and validation of the PPI prediction of the hybrid model and demonstrates that the model has consistent ability to leverage the forecasting advantage of GA-SVR in non-linear space and of ARIMA in linear space.展开更多
Since 2002,the People's Bank of China has frequently used both quantity-based direct monetary instruments and price-based indirect monetary instruments to promote economic growth and stabilize price level.Specific...Since 2002,the People's Bank of China has frequently used both quantity-based direct monetary instruments and price-based indirect monetary instruments to promote economic growth and stabilize price level.Specifically,this study estimates 13 three-variable factor-augmented vector autoregression (FAVAR) models to explore how two types of monetary instruments affect China's economy and price level.Overall,we find that monetary policy has positive effects on China's economy and price level.Second,this study clearly states that the effectiveness of China's monetary policy on the economy has depended on China's quantity-based direct monetary instruments since 2002.Third,the effectiveness of quantity-based direct monetary instruments on China's economy and price level is dependent on the significant and positive effects of quantity-based direct monetary instruments after the 2008 financial crisis.Fourth,the significant and positive effects of price-based indirect monetary instruments on China's economy and price level before 2008 cannot fundamentally change their current insignificant effects on China's economy and price level.展开更多
A revised support vector regression (SVR) ensemble model based on boosting algorithm (SVR-Boosting) is presented in this paper for electricity price forecasting in electric power market. In the light of characteristic...A revised support vector regression (SVR) ensemble model based on boosting algorithm (SVR-Boosting) is presented in this paper for electricity price forecasting in electric power market. In the light of characteristics of electricity price sequence, a new triangular-shaped 为oss function is constructed in the training of the forecasting model to inhibit the learning from abnormal data in electricity price sequence. The results from actual data indicate that, compared with the single support vector regression model, the proposed SVR-Boosting ensemble model is able to enhance the stability of the model output remarkably, acquire higher predicting accuracy, and possess comparatively satisfactory generalization capability.展开更多
Price prediction of goods is a vital point of research due to how common e-commerce platforms are.There are several efforts conducted to forecast the price of items using classicmachine learning algorithms and statist...Price prediction of goods is a vital point of research due to how common e-commerce platforms are.There are several efforts conducted to forecast the price of items using classicmachine learning algorithms and statisticalmodels.These models can predict prices of various financial instruments,e.g.,gold,oil,cryptocurrencies,stocks,and second-hand items.Despite these efforts,the literature has no model for predicting the prices of seasonal goods(e.g.,Christmas gifts).In this context,we framed the task of seasonal goods price prediction as a regression problem.First,we utilized a real online trailer dataset of Christmas gifts and then we proposed several machine learningbased models and one statistical-based model to predict the prices of these seasonal products.Second,we utilized a real-life dataset of Christmas gifts for the prediction task.Then,we proposed support vector regressor(SVR),linear regression,random forest,and ridgemodels as machine learningmodels for price prediction.Next,we proposed an autoregressive-integrated-movingaverage(ARIMA)model for the same purpose as a statistical-based model.Finally,we evaluated the performance of the proposed models;the comparison shows that the best performing model was the random forest model,followed by the ARIMA model.展开更多
Reliable forecasts of the price of oil are of interest for a wide range of applications. For example, central banks and private sector forecasters view the price of oil as one of the key variables in generating macroe...Reliable forecasts of the price of oil are of interest for a wide range of applications. For example, central banks and private sector forecasters view the price of oil as one of the key variables in generating macroeconomic projections and in assessing macroeconomic risks. Of particular interest is the question of the extent to which the price of oil is helpful in predicting recessions. This paper presents a statistical learning method (SLM) based on combined fuzzy system (FS), artificial neural network (ANN), and support vector regression (SVR) to cope with optimum long-term oil price forecasting in noisy, uncertain, and complex environments. A number of quantitative factors were discovered from this model and used as the input. For verification and testing, the West Texas Intermediate (WT1) crude oil spot price is used to test the effectiveness of the proposed learning methodology. Empirical results reveal that the proposed SLM-based forecasting can model the nonlinear relationship between the input variables and price very well. Furthermore, in-sample and out-of-sample prediction performance also demonstrates that the proposed SLM model can produce more accurate prediction results than other nonlinear models.展开更多
基金Project(50878082) supported by the National Natural Science Foundation of ChinaProject(200631880237) supported by the Science and Technology Program of West Transportation of the Ministry of Transportation of ChinaKey Project(09JJ3104) supported by the Natural Science Foundation of Hunan Province, China
文摘In the reliability analysis of slope, the performance functions derived from the most available stability analysis procedures of slopes are usually implicit and cannot be solved by first-order second-moment approach. A new reliability analysis approach was presented based on three-dimensional Morgenstem-Price method to investigate three-dimensional effect of landslide in stability analyses. To obtain the reliability index, Support Vector Machine (SVM) was applied to approximate the performance function. The time-consuming of this approach is only 0.028% of that using Monte-Carlo method at the same computation accuracy. Also, the influence of time effect of shearing strength parameters of slope soils on the long-term reliability of three-dimensional slopes was investigated by this new approach. It is found that the reliability index of the slope would decrease by 52.54% and the failure probability would increase from 0.000 705% to 1.966%. In the end, the impact of variation coefficients of c andfon reliability index of slopes was taken into discussion and the changing trend was observed.
文摘Price discovery is one of the main functions of stock index futures.Using the daily closing prices of the CSI 300 index and its index futures from April 2010 to April 2012,this paper applies a vector error correction model(VECM)and an impulse response function to conduct an empirical analysis on the price discovery function of index futures in China.This paper has the following four findings:(1)a solid cointegration relationship between the CSI 300 index and its index futures exists in the long run;(2)when prices deviate from the longterm equilibrium,the stock index reverses weakly,while the reversal of index futures is much stronger;(3)the daily lead-lag relationship between the prices of the CSI 300 index and its index futures contracts is not significant in the short run;()shocks from the spot market have a lasting impact upon the futures market,but not vice versa,due to the limited short-term adjustment ability of the spot market.
基金This work was supported by Hainan Provincial Natural Science Foundation of China[2018CXTD333,617048]The National Natural Science Foundation of China[61762033,61702539]+1 种基金Hainan University Doctor Start Fund Project[kyqd1328]Hainan University Youth Fund Project[qnjj1444].
文摘The accuracy of predicting the Producer Price Index(PPI)plays an indispensable role in government economic work.However,it is difficult to forecast the PPI.In our research,we first propose an unprecedented hybrid model based on fuzzy information granulation that integrates the GA-SVR and ARIMA(Autoregressive Integrated Moving Average Model)models.The fuzzy-information-granulation-based GA-SVR-ARIMA hybrid model is intended to deal with the problem of imprecision in PPI estimation.The proposed model adopts the fuzzy information-granulation algorithm to pre-classification-process monthly training samples of the PPI,and produced three different sequences of fuzzy information granules,whose Support Vector Regression(SVR)machine forecast models were separately established for their Genetic Algorithm(GA)optimization parameters.Finally,the residual errors of the GA-SVR model were rectified through ARIMA modeling,and the PPI estimate was reached.Research shows that the PPI value predicted by this hybrid model is more accurate than that predicted by other models,including ARIMA,GRNN,and GA-SVR,following several comparative experiments.Research also indicates the precision and validation of the PPI prediction of the hybrid model and demonstrates that the model has consistent ability to leverage the forecasting advantage of GA-SVR in non-linear space and of ARIMA in linear space.
基金The anthors thank the support from Tianjin Philosophy and Social Science Planning Project(No.TJYYQN19-004)Project of National and Regional Research Center,Ministry of Education(No.ZX20170183)National Natural Science Foundation Youth Project(No.71803089).
文摘Since 2002,the People's Bank of China has frequently used both quantity-based direct monetary instruments and price-based indirect monetary instruments to promote economic growth and stabilize price level.Specifically,this study estimates 13 three-variable factor-augmented vector autoregression (FAVAR) models to explore how two types of monetary instruments affect China's economy and price level.Overall,we find that monetary policy has positive effects on China's economy and price level.Second,this study clearly states that the effectiveness of China's monetary policy on the economy has depended on China's quantity-based direct monetary instruments since 2002.Third,the effectiveness of quantity-based direct monetary instruments on China's economy and price level is dependent on the significant and positive effects of quantity-based direct monetary instruments after the 2008 financial crisis.Fourth,the significant and positive effects of price-based indirect monetary instruments on China's economy and price level before 2008 cannot fundamentally change their current insignificant effects on China's economy and price level.
基金Sponsored by the National Outstanding Young Investigator Grant (Grant No6970025)the Key Project of National Natural Science Foundation (GrantNo59937150)+2 种基金863 High Tech Development Plan (Grant No2001AA413910)of China and the Key Project of National Natural Science Foundation(Grant No59937150)the Project of National Natural Science Foundation (Grant No60274054)
文摘A revised support vector regression (SVR) ensemble model based on boosting algorithm (SVR-Boosting) is presented in this paper for electricity price forecasting in electric power market. In the light of characteristics of electricity price sequence, a new triangular-shaped 为oss function is constructed in the training of the forecasting model to inhibit the learning from abnormal data in electricity price sequence. The results from actual data indicate that, compared with the single support vector regression model, the proposed SVR-Boosting ensemble model is able to enhance the stability of the model output remarkably, acquire higher predicting accuracy, and possess comparatively satisfactory generalization capability.
文摘Price prediction of goods is a vital point of research due to how common e-commerce platforms are.There are several efforts conducted to forecast the price of items using classicmachine learning algorithms and statisticalmodels.These models can predict prices of various financial instruments,e.g.,gold,oil,cryptocurrencies,stocks,and second-hand items.Despite these efforts,the literature has no model for predicting the prices of seasonal goods(e.g.,Christmas gifts).In this context,we framed the task of seasonal goods price prediction as a regression problem.First,we utilized a real online trailer dataset of Christmas gifts and then we proposed several machine learningbased models and one statistical-based model to predict the prices of these seasonal products.Second,we utilized a real-life dataset of Christmas gifts for the prediction task.Then,we proposed support vector regressor(SVR),linear regression,random forest,and ridgemodels as machine learningmodels for price prediction.Next,we proposed an autoregressive-integrated-movingaverage(ARIMA)model for the same purpose as a statistical-based model.Finally,we evaluated the performance of the proposed models;the comparison shows that the best performing model was the random forest model,followed by the ARIMA model.
文摘Reliable forecasts of the price of oil are of interest for a wide range of applications. For example, central banks and private sector forecasters view the price of oil as one of the key variables in generating macroeconomic projections and in assessing macroeconomic risks. Of particular interest is the question of the extent to which the price of oil is helpful in predicting recessions. This paper presents a statistical learning method (SLM) based on combined fuzzy system (FS), artificial neural network (ANN), and support vector regression (SVR) to cope with optimum long-term oil price forecasting in noisy, uncertain, and complex environments. A number of quantitative factors were discovered from this model and used as the input. For verification and testing, the West Texas Intermediate (WT1) crude oil spot price is used to test the effectiveness of the proposed learning methodology. Empirical results reveal that the proposed SLM-based forecasting can model the nonlinear relationship between the input variables and price very well. Furthermore, in-sample and out-of-sample prediction performance also demonstrates that the proposed SLM model can produce more accurate prediction results than other nonlinear models.