Remote sensing technology has long been used to detect and map crop diseases.Airborne and satellite imagery acquired during growing seasons can be used not only for early detection and within-season management of some...Remote sensing technology has long been used to detect and map crop diseases.Airborne and satellite imagery acquired during growing seasons can be used not only for early detection and within-season management of some crop diseases,but also for the control of recurring diseases in future seasons.With variable rate technology in precision agriculture,site-specific fungicide application can be made to infested areas if the disease is stable,although traditional uniform application is more appropriate for diseases that can spread rapidly across the field.This article provides a brief overview of remote sensing and precision agriculture technologies that have been used for crop disease detection and management.Specifically,the article illustrates how airborne and satellite imagery and variable rate technology have been used for detecting and mapping cotton root rot,a destructive soilborne fungal disease,in cotton fields and how site-specific fungicide application has been implemented using prescription maps derived from the imagery for effective control of the disease.The overview and methodologies presented in this article should provide researchers,extension personnel,growers,crop consultants,and farm equipment and chemical dealers with practical guidelines for remote sensing detection and effective management of some crop diseases.展开更多
The efficient and effective application of fertilizers to crops is a major challenge.Conventionally,constant rate or equal dose of fertilizer is applied to each plant.Constant rate fertilizer application across entire...The efficient and effective application of fertilizers to crops is a major challenge.Conventionally,constant rate or equal dose of fertilizer is applied to each plant.Constant rate fertilizer application across entire field can result in over or under incorporation of nutrients.Fertilizer application is influenced by soil parameters as well as geographical variation in the field.The nutrient management depends on selection of nutrient,application rate and placement of nutrient at the optimal distance from the crop and soil depth.Variable rate technology(VRT)is an input application technology that allows for the application of inputs at a certain rate,time,and place based on soil properties and spatial variation in the field or plants.There are two approaches for implementing VRT,one is sensor based and another is map based.The sensor based approach;with suitable sensors,measures the soil and crop characteristics on-the-go calculating the amount of nutrients required per unit area/plant and micro controlling unit which uses suitable algorithms for controlling the flow of fertilizer with required amount of nutrient.In map based approach;Grid sampling and soil analysis are used to create a prescription map.According to the soil and crop conditions,the microcontroller regulates the desired application rate.The sensor-based VRT system includes a fertilizer tank,sensors,GPS,microcontroller,actuators,and other components,whereas the map-based system does not require an on-the-go sensor.Both approaches of VRT for fertilizer application in orchards and field crops are reviewed in this paper.The use of this advance technology surely increases the fertilizer use efficiency;improve crop yield and profitability with reduced environment impacts.展开更多
Precision Agriculture, also known as Precision Farming, or Prescription Farming, is a modern agriculture technology system, which brings ' precision' into agriculture system. All concepts of Precision Agricult...Precision Agriculture, also known as Precision Farming, or Prescription Farming, is a modern agriculture technology system, which brings ' precision' into agriculture system. All concepts of Precision Agriculture are established on the collection and management of variable cropland information. As the tool of collecting, managing and analyzing spatial data, GIS is the key technology of integrated Precision Agriculture system. This article puts forward the concept of Farmland GIS and designs Farmland GIS into five modules, and specifies the functions of the each module, which builds the foundation for practical development of the software. The study and development of Farmland GIS will propel the spreading of Precision Agriculture technology in China.展开更多
基金Supported by 863 Program of Chinese Science & Technology Ministry(2004AA2Z4120)and.by Scientific Research Foundation for Doctoral Discipline of Chinese Ministry(20040712018)
文摘结合中国现实国情,应用先进的单片机、G IS、GPS以及变量控制技术,设计了一种经济实用、先进的变量灌溉控制系统。系统设计采用AT 89C 51单片机作为系统微处理器,Jup iter GPS OEM二次开发作为GPS接收机,IC卡作为G IS数据传递媒体,并根据矢量法提出一种简单快速的田间定位和数据查询算法。灌溉机在田间工作时,系统可从GPS OEM得到位置信息,进行地块识别和位置判断;然后根据位置信息从IC卡的G IS信息中查询土壤属性数据或处方数据,结合机械行走速度、施水幅宽等进行运算,得出某一时刻的灌水量;最后向控制器发出指令,实现变量节水灌溉。田间和实验室模拟试验结果表明,自行研制的低成本GPS OEM接收机,可获得与A g GPS132相当的定位精度,控制系统能根据处方图的不同需水量,通过电磁阀驱动电路得到变化的输出,实现自动变量施水,系统也能根据需水量进行手动灌溉。
文摘Remote sensing technology has long been used to detect and map crop diseases.Airborne and satellite imagery acquired during growing seasons can be used not only for early detection and within-season management of some crop diseases,but also for the control of recurring diseases in future seasons.With variable rate technology in precision agriculture,site-specific fungicide application can be made to infested areas if the disease is stable,although traditional uniform application is more appropriate for diseases that can spread rapidly across the field.This article provides a brief overview of remote sensing and precision agriculture technologies that have been used for crop disease detection and management.Specifically,the article illustrates how airborne and satellite imagery and variable rate technology have been used for detecting and mapping cotton root rot,a destructive soilborne fungal disease,in cotton fields and how site-specific fungicide application has been implemented using prescription maps derived from the imagery for effective control of the disease.The overview and methodologies presented in this article should provide researchers,extension personnel,growers,crop consultants,and farm equipment and chemical dealers with practical guidelines for remote sensing detection and effective management of some crop diseases.
文摘The efficient and effective application of fertilizers to crops is a major challenge.Conventionally,constant rate or equal dose of fertilizer is applied to each plant.Constant rate fertilizer application across entire field can result in over or under incorporation of nutrients.Fertilizer application is influenced by soil parameters as well as geographical variation in the field.The nutrient management depends on selection of nutrient,application rate and placement of nutrient at the optimal distance from the crop and soil depth.Variable rate technology(VRT)is an input application technology that allows for the application of inputs at a certain rate,time,and place based on soil properties and spatial variation in the field or plants.There are two approaches for implementing VRT,one is sensor based and another is map based.The sensor based approach;with suitable sensors,measures the soil and crop characteristics on-the-go calculating the amount of nutrients required per unit area/plant and micro controlling unit which uses suitable algorithms for controlling the flow of fertilizer with required amount of nutrient.In map based approach;Grid sampling and soil analysis are used to create a prescription map.According to the soil and crop conditions,the microcontroller regulates the desired application rate.The sensor-based VRT system includes a fertilizer tank,sensors,GPS,microcontroller,actuators,and other components,whereas the map-based system does not require an on-the-go sensor.Both approaches of VRT for fertilizer application in orchards and field crops are reviewed in this paper.The use of this advance technology surely increases the fertilizer use efficiency;improve crop yield and profitability with reduced environment impacts.
基金the Knowledge Innovation Project of the Chinese Academy of Sciences(No.NZCX2-412).
文摘Precision Agriculture, also known as Precision Farming, or Prescription Farming, is a modern agriculture technology system, which brings ' precision' into agriculture system. All concepts of Precision Agriculture are established on the collection and management of variable cropland information. As the tool of collecting, managing and analyzing spatial data, GIS is the key technology of integrated Precision Agriculture system. This article puts forward the concept of Farmland GIS and designs Farmland GIS into five modules, and specifies the functions of the each module, which builds the foundation for practical development of the software. The study and development of Farmland GIS will propel the spreading of Precision Agriculture technology in China.