石蜡一直存在难乳化、乳液稳定性差等问题。研究了以切片石蜡为原料,采用种子乳液聚合法,选择复配型乳化剂;讨论了乳化剂用量,乳化时间,乳化温度以及搅拌速度等因素对石蜡乳液稳定性和分散性的影响。结果表明:在乳化剂用量为乳液总量的1...石蜡一直存在难乳化、乳液稳定性差等问题。研究了以切片石蜡为原料,采用种子乳液聚合法,选择复配型乳化剂;讨论了乳化剂用量,乳化时间,乳化温度以及搅拌速度等因素对石蜡乳液稳定性和分散性的影响。结果表明:在乳化剂用量为乳液总量的10%,乳化时间为70 m in,乳化温度控制在(85±5)℃,搅拌速度为1500 r/m in的反应条件下,可制备出稳定的切片石蜡乳液。展开更多
The efficient separation of water-in-oil emulsion is of significance in environment and energy filed,and it has become a world-wide challenge.Herein,we have presented a one-step,facile and low-cost approach to prepare...The efficient separation of water-in-oil emulsion is of significance in environment and energy filed,and it has become a world-wide challenge.Herein,we have presented a one-step,facile and low-cost approach to prepare superhydrophobic sands for efficient separation of water-in-oil emulsion.The as-prepared sand layers possessed a water contact angle higher than 151°,demonstrating their superior superhydrophobic property.Besides,the as-prepared sand layers could separate water-in-emulsions with separation efficiency up to 99.7%,which is superior to both traditional and superwettable filtration membranes.The effect of thickness of sand layer on separation performance was also investigated.The results showed that the filtration flux decreased with the increased of filtration thickness while the separation efficiency increased.The as-prepared sand layer proposed by this study is a processing candidate for separating water-in-oil emulsion in practical industry.Additionally,the as-prepared superhydrophobic sand fabrication method also provides an alternative for desert water storage.展开更多
文摘石蜡一直存在难乳化、乳液稳定性差等问题。研究了以切片石蜡为原料,采用种子乳液聚合法,选择复配型乳化剂;讨论了乳化剂用量,乳化时间,乳化温度以及搅拌速度等因素对石蜡乳液稳定性和分散性的影响。结果表明:在乳化剂用量为乳液总量的10%,乳化时间为70 m in,乳化温度控制在(85±5)℃,搅拌速度为1500 r/m in的反应条件下,可制备出稳定的切片石蜡乳液。
基金supported by the Northeast Petroleum University Youth Science Foundation of China (Grant No. 15071120619)Tribology Science Fund of State Key Laboratory of Tribology (No. SKLTKF19B05)
文摘The efficient separation of water-in-oil emulsion is of significance in environment and energy filed,and it has become a world-wide challenge.Herein,we have presented a one-step,facile and low-cost approach to prepare superhydrophobic sands for efficient separation of water-in-oil emulsion.The as-prepared sand layers possessed a water contact angle higher than 151°,demonstrating their superior superhydrophobic property.Besides,the as-prepared sand layers could separate water-in-emulsions with separation efficiency up to 99.7%,which is superior to both traditional and superwettable filtration membranes.The effect of thickness of sand layer on separation performance was also investigated.The results showed that the filtration flux decreased with the increased of filtration thickness while the separation efficiency increased.The as-prepared sand layer proposed by this study is a processing candidate for separating water-in-oil emulsion in practical industry.Additionally,the as-prepared superhydrophobic sand fabrication method also provides an alternative for desert water storage.