Landslide displacement prediction can enhance the efficacy of landslide monitoring system,and the prediction of the periodic displacement is particularly challenging.In the previous studies,static regression models(e....Landslide displacement prediction can enhance the efficacy of landslide monitoring system,and the prediction of the periodic displacement is particularly challenging.In the previous studies,static regression models(e.g.,support vector machine(SVM))were mostly used for predicting the periodic displacement.These models may have bad performances,when the dynamic features of landslide triggers are incorporated.This paper proposes a method for predicting the landslide displacement in a dynamic manner,based on the gated recurrent unit(GRU)neural network and complete ensemble empirical decomposition with adaptive noise(CEEMDAN).The CEEMDAN is used to decompose the training data,and the GRU is subsequently used for predicting the periodic displacement.Implementation procedures of the proposed method were illustrated by a case study in the Caojiatuo landslide area,and SVM was also adopted for the periodic displacement prediction.This case study shows that the predictors obtained by SVM are inaccurate,as the landslide displacement is in a pronouncedly step-wise manner.By contrast,the accuracy can be significantly improved using the dynamic predictive method.This paper reveals the significance of capturing the dynamic features of the inputs in the training process,when the machine learning models are adopted to predict the landslide displacement.展开更多
To perform landslide susceptibility prediction(LSP),it is important to select appropriate mapping unit and landslide-related conditioning factors.The efficient and automatic multi-scale segmentation(MSS)method propose...To perform landslide susceptibility prediction(LSP),it is important to select appropriate mapping unit and landslide-related conditioning factors.The efficient and automatic multi-scale segmentation(MSS)method proposed by the authors promotes the application of slope units.However,LSP modeling based on these slope units has not been performed.Moreover,the heterogeneity of conditioning factors in slope units is neglected,leading to incomplete input variables of LSP modeling.In this study,the slope units extracted by the MSS method are used to construct LSP modeling,and the heterogeneity of conditioning factors is represented by the internal variations of conditioning factors within slope unit using the descriptive statistics features of mean,standard deviation and range.Thus,slope units-based machine learning models considering internal variations of conditioning factors(variant slope-machine learning)are proposed.The Chongyi County is selected as the case study and is divided into 53,055 slope units.Fifteen original slope unit-based conditioning factors are expanded to 38 slope unit-based conditioning factors through considering their internal variations.Random forest(RF)and multi-layer perceptron(MLP)machine learning models are used to construct variant Slope-RF and Slope-MLP models.Meanwhile,the Slope-RF and Slope-MLP models without considering the internal variations of conditioning factors,and conventional grid units-based machine learning(Grid-RF and MLP)models are built for comparisons through the LSP performance assessments.Results show that the variant Slopemachine learning models have higher LSP performances than Slope-machine learning models;LSP results of variant Slope-machine learning models have stronger directivity and practical application than Grid-machine learning models.It is concluded that slope units extracted by MSS method can be appropriate for LSP modeling,and the heterogeneity of conditioning factors within slope units can more comprehensively reflect the relationships between conditioning展开更多
The rapid growth of the Chinese economy has fueled the expansion of power grids.Power transformers are key equipment in power grid projects,and their price changes have a significant impact on cost control.However,the...The rapid growth of the Chinese economy has fueled the expansion of power grids.Power transformers are key equipment in power grid projects,and their price changes have a significant impact on cost control.However,the prices of power transformer materials manifest as nonsmooth and nonlinear sequences.Hence,estimating the acquisition costs of power grid projects is difficult,hindering the normal operation of power engineering construction.To more accurately predict the price of power transformer materials,this study proposes a method based on complementary ensemble empirical mode decomposition(CEEMD)and gated recurrent unit(GRU)network.First,the CEEMD decomposed the price series into multiple intrinsic mode functions(IMFs).Multiple IMFs were clustered to obtain several aggregated sequences based on the sample entropy of each IMF.Then,an empirical wavelet transform(EWT)was applied to the aggregation sequence with a large sample entropy,and the multiple subsequences obtained from the decomposition were predicted by the GRU model.The GRU model was used to directly predict the aggregation sequences with a small sample entropy.In this study,we used authentic historical pricing data for power transformer materials to validate the proposed approach.The empirical findings demonstrated the efficacy of our method across both datasets,with mean absolute percentage errors(MAPEs)of less than 1%and 3%.This approach holds a significant reference value for future research in the field of power transformer material price prediction.展开更多
Considering the nonlinear structure and spatial-temporal correlation of traffic network,and the influence of potential correlation between nodes of traffic network on the spatial features,this paper proposes a traffic...Considering the nonlinear structure and spatial-temporal correlation of traffic network,and the influence of potential correlation between nodes of traffic network on the spatial features,this paper proposes a traffic speed prediction model based on the combination of graph attention network with self-adaptive adjacency matrix(SAdpGAT)and bidirectional gated recurrent unit(BiGRU).First-ly,the model introduces graph attention network(GAT)to extract the spatial features of real road network and potential road network respectively in spatial dimension.Secondly,the spatial features are input into BiGRU to extract the time series features.Finally,the prediction results of the real road network and the potential road network are connected to generate the final prediction results of the model.The experimental results show that the prediction accuracy of the proposed model is im-proved obviously on METR-LA and PEMS-BAY datasets,which proves the advantages of the pro-posed spatial-temporal model in traffic speed prediction.展开更多
This study aims to investigate the effects of different mapping unit scales and study area scales on the uncertainty rules of landslide susceptibility prediction(LSP).To illustrate various study area scales,Ganzhou Ci...This study aims to investigate the effects of different mapping unit scales and study area scales on the uncertainty rules of landslide susceptibility prediction(LSP).To illustrate various study area scales,Ganzhou City in China,its eastern region(Ganzhou East),and Ruijin County in Ganzhou East were chosen.Different mapping unit scales are represented by grid units with spatial resolution of 30 and 60 m,as well as slope units that were extracted by multi-scale segmentation method.The 3855 landslide locations and 21 typical environmental factors in Ganzhou City are first determined to create spatial datasets with input-outputs.Then,landslide susceptibility maps(LSMs)of Ganzhou City,Ganzhou East and Ruijin County are pro-duced using a support vector machine(SVM)and random forest(RF),respectively.The LSMs of the above three regions are then extracted by mask from the LSM of Ganzhou City,along with the LSMs of Ruijin County from Ganzhou East.Additionally,LSMs of Ruijin at various mapping unit scales are generated in accordance.Accuracy and landslide suscepti-bility indexes(LSIs)distribution are used to express LSP uncertainties.The LSP uncertainties under grid units significantly decrease as study area scales decrease from Ganzhou City,Ganzhou East to Ruijin County,whereas those under slope units are less affected by study area scales.Of course,attentions should also be paid to the broader representativeness of large study areas.The LSP accuracy of slope units increases by about 6%–10%compared with those under grid units with 30 m and 60 m resolution in the same study area's scale.The significance of environmental factors exhibits an averaging trend as study area scale increases from small to large.The importance of environmental factors varies greatly with the 60 m grid unit,but it tends to be consistent to some extent in the 30 m grid unit and the slope unit.展开更多
To address the imbalance problem between supply and demand for taxis and passengers,this paper proposes a distributed ensemble empirical mode decomposition with normalization of spatial attention mechanism based bi-di...To address the imbalance problem between supply and demand for taxis and passengers,this paper proposes a distributed ensemble empirical mode decomposition with normalization of spatial attention mechanism based bi-directional gated recurrent unit(EEMDN-SABiGRU)model on Spark for accurate passenger hotspot prediction.It focuses on reducing blind cruising costs,improving carrying efficiency,and maximizing incomes.Specifically,the EEMDN method is put forward to process the passenger hotspot data in the grid to solve the problems of non-smooth sequences and the degradation of prediction accuracy caused by excessive numerical differences,while dealing with the eigenmodal EMD.Next,a spatial attention mechanism is constructed to capture the characteristics of passenger hotspots in each grid,taking passenger boarding and alighting hotspots as weights and emphasizing the spatial regularity of passengers in the grid.Furthermore,the bi-directional GRU algorithm is merged to deal with the problem that GRU can obtain only the forward information but ignores the backward information,to improve the accuracy of feature extraction.Finally,the accurate prediction of passenger hotspots is achieved based on the EEMDN-SABiGRU model using real-world taxi GPS trajectory data in the Spark parallel computing framework.The experimental results demonstrate that based on the four datasets in the 00-grid,compared with LSTM,EMDLSTM,EEMD-LSTM,GRU,EMD-GRU,EEMD-GRU,EMDN-GRU,CNN,and BP,the mean absolute percentage error,mean absolute error,root mean square error,and maximum error values of EEMDN-SABiGRU decrease by at least 43.18%,44.91%,55.04%,and 39.33%,respectively.展开更多
Objective This study aimed to explore the mortality prediction of patients with cerebrovascular diseases inthe intensive care unit(ICU)by examining the important signals during different periods of admission in theICU...Objective This study aimed to explore the mortality prediction of patients with cerebrovascular diseases inthe intensive care unit(ICU)by examining the important signals during different periods of admission in theICU,which is considered one of the new topics in the medical field.Several approaches have been proposed forprediction in this area.Each of these methods has been able to predict mortality somewhat,but many of thesetechniques require recording a large amount of data from the patients,where recording all data is not possiblein most cases;at the same time,this study focused only on heart rate variability(HRV)and systolic and diastolicblood pressure.Methods The ICU data used for the challenge were extracted from the Multiparameter Intelligent Monitoring inIntensive Care II(MIMIC-II)Clinical Database.The proposed algorithm was evaluated using data from 88 cerebrovascular ICU patients,48 men and 40 women,during their first 48 hours of ICU stay.The electrocardiogram(ECG)signals are related to lead II,and the sampling frequency is 125 Hz.The time of admission and time ofdeath are labeled in all data.In this study,the mortality prediction in patients with cerebral ischemia is evaluated using the features extracted from the return map generated by the signal of HRV and blood pressure.Topredict the patient’s future condition,the combination of features extracted from the return mapping generatedby the HRV signal,such as angle(𝛼),area(A),and various parameters generated by systolic and diastolic bloodpressure,including DBPMax−Min SBPSD have been used.Also,to select the best feature combination,the geneticalgorithm(GA)and mutual information(MI)methods were used.Paired sample t-test statistical analysis was usedto compare the results of two episodes(death and non-death episodes).The P-value for detecting the significancelevel was considered less than 0.005.Results The results indicate that the new approach presented in this paper can be compared with other methodsor leads to better results.The best combinatio展开更多
针对帧内实施可逆水印造成误差传播的问题,基于高效视频编码(High Efficiency Video Coding,HEVC)标准,提出一种用于消除帧内误差传播的可逆水印算法。算法充分考虑了HEVC新的编码特性,对帧内嵌入水印后的误差传播情况进行了分析,随后...针对帧内实施可逆水印造成误差传播的问题,基于高效视频编码(High Efficiency Video Coding,HEVC)标准,提出一种用于消除帧内误差传播的可逆水印算法。算法充分考虑了HEVC新的编码特性,对帧内嵌入水印后的误差传播情况进行了分析,随后给出了在帧内4×4预测单元中嵌入水印后不会引起误差传播的条件;最后选出满足条件的4×4系数块,采用"和不变"方法将水印自适应地嵌入其量化离散正弦变换系数中。出于减小码率增长的考虑,全0系数块不嵌入水印。实验结果表明,该算法能够有效地消除帧内由嵌入水印引起的误差传播,从而减小视觉失真。同时,算法对码率的影响也较小。展开更多
基金The authors appreciate the financial support provided by the Natural Science Foundation of China(No.41807294)This study was also financially supported by China Geological Survey Project(Nos.DD20190716 and 0001212020CC60002)。
文摘Landslide displacement prediction can enhance the efficacy of landslide monitoring system,and the prediction of the periodic displacement is particularly challenging.In the previous studies,static regression models(e.g.,support vector machine(SVM))were mostly used for predicting the periodic displacement.These models may have bad performances,when the dynamic features of landslide triggers are incorporated.This paper proposes a method for predicting the landslide displacement in a dynamic manner,based on the gated recurrent unit(GRU)neural network and complete ensemble empirical decomposition with adaptive noise(CEEMDAN).The CEEMDAN is used to decompose the training data,and the GRU is subsequently used for predicting the periodic displacement.Implementation procedures of the proposed method were illustrated by a case study in the Caojiatuo landslide area,and SVM was also adopted for the periodic displacement prediction.This case study shows that the predictors obtained by SVM are inaccurate,as the landslide displacement is in a pronouncedly step-wise manner.By contrast,the accuracy can be significantly improved using the dynamic predictive method.This paper reveals the significance of capturing the dynamic features of the inputs in the training process,when the machine learning models are adopted to predict the landslide displacement.
基金funded by the Natural Science Foundation of China(Grant Nos.41807285,41972280 and 52179103).
文摘To perform landslide susceptibility prediction(LSP),it is important to select appropriate mapping unit and landslide-related conditioning factors.The efficient and automatic multi-scale segmentation(MSS)method proposed by the authors promotes the application of slope units.However,LSP modeling based on these slope units has not been performed.Moreover,the heterogeneity of conditioning factors in slope units is neglected,leading to incomplete input variables of LSP modeling.In this study,the slope units extracted by the MSS method are used to construct LSP modeling,and the heterogeneity of conditioning factors is represented by the internal variations of conditioning factors within slope unit using the descriptive statistics features of mean,standard deviation and range.Thus,slope units-based machine learning models considering internal variations of conditioning factors(variant slope-machine learning)are proposed.The Chongyi County is selected as the case study and is divided into 53,055 slope units.Fifteen original slope unit-based conditioning factors are expanded to 38 slope unit-based conditioning factors through considering their internal variations.Random forest(RF)and multi-layer perceptron(MLP)machine learning models are used to construct variant Slope-RF and Slope-MLP models.Meanwhile,the Slope-RF and Slope-MLP models without considering the internal variations of conditioning factors,and conventional grid units-based machine learning(Grid-RF and MLP)models are built for comparisons through the LSP performance assessments.Results show that the variant Slopemachine learning models have higher LSP performances than Slope-machine learning models;LSP results of variant Slope-machine learning models have stronger directivity and practical application than Grid-machine learning models.It is concluded that slope units extracted by MSS method can be appropriate for LSP modeling,and the heterogeneity of conditioning factors within slope units can more comprehensively reflect the relationships between conditioning
基金supported by China Southern Power Grid Science and Technology Innovation Research Project(000000KK52220052).
文摘The rapid growth of the Chinese economy has fueled the expansion of power grids.Power transformers are key equipment in power grid projects,and their price changes have a significant impact on cost control.However,the prices of power transformer materials manifest as nonsmooth and nonlinear sequences.Hence,estimating the acquisition costs of power grid projects is difficult,hindering the normal operation of power engineering construction.To more accurately predict the price of power transformer materials,this study proposes a method based on complementary ensemble empirical mode decomposition(CEEMD)and gated recurrent unit(GRU)network.First,the CEEMD decomposed the price series into multiple intrinsic mode functions(IMFs).Multiple IMFs were clustered to obtain several aggregated sequences based on the sample entropy of each IMF.Then,an empirical wavelet transform(EWT)was applied to the aggregation sequence with a large sample entropy,and the multiple subsequences obtained from the decomposition were predicted by the GRU model.The GRU model was used to directly predict the aggregation sequences with a small sample entropy.In this study,we used authentic historical pricing data for power transformer materials to validate the proposed approach.The empirical findings demonstrated the efficacy of our method across both datasets,with mean absolute percentage errors(MAPEs)of less than 1%and 3%.This approach holds a significant reference value for future research in the field of power transformer material price prediction.
基金the National Natural Science Foundation of China(No.61461027,61762059)the Provincial Science and Technology Program supported the Key Project of Natural Science Foundation of Gansu Province(No.22JR5RA226)。
文摘Considering the nonlinear structure and spatial-temporal correlation of traffic network,and the influence of potential correlation between nodes of traffic network on the spatial features,this paper proposes a traffic speed prediction model based on the combination of graph attention network with self-adaptive adjacency matrix(SAdpGAT)and bidirectional gated recurrent unit(BiGRU).First-ly,the model introduces graph attention network(GAT)to extract the spatial features of real road network and potential road network respectively in spatial dimension.Secondly,the spatial features are input into BiGRU to extract the time series features.Finally,the prediction results of the real road network and the potential road network are connected to generate the final prediction results of the model.The experimental results show that the prediction accuracy of the proposed model is im-proved obviously on METR-LA and PEMS-BAY datasets,which proves the advantages of the pro-posed spatial-temporal model in traffic speed prediction.
基金the Natural Science Foundation of China(41807285)Interdisciplinary Innovation Fund of Natural Science,NanChang University(9167-28220007-YB2107).
文摘This study aims to investigate the effects of different mapping unit scales and study area scales on the uncertainty rules of landslide susceptibility prediction(LSP).To illustrate various study area scales,Ganzhou City in China,its eastern region(Ganzhou East),and Ruijin County in Ganzhou East were chosen.Different mapping unit scales are represented by grid units with spatial resolution of 30 and 60 m,as well as slope units that were extracted by multi-scale segmentation method.The 3855 landslide locations and 21 typical environmental factors in Ganzhou City are first determined to create spatial datasets with input-outputs.Then,landslide susceptibility maps(LSMs)of Ganzhou City,Ganzhou East and Ruijin County are pro-duced using a support vector machine(SVM)and random forest(RF),respectively.The LSMs of the above three regions are then extracted by mask from the LSM of Ganzhou City,along with the LSMs of Ruijin County from Ganzhou East.Additionally,LSMs of Ruijin at various mapping unit scales are generated in accordance.Accuracy and landslide suscepti-bility indexes(LSIs)distribution are used to express LSP uncertainties.The LSP uncertainties under grid units significantly decrease as study area scales decrease from Ganzhou City,Ganzhou East to Ruijin County,whereas those under slope units are less affected by study area scales.Of course,attentions should also be paid to the broader representativeness of large study areas.The LSP accuracy of slope units increases by about 6%–10%compared with those under grid units with 30 m and 60 m resolution in the same study area's scale.The significance of environmental factors exhibits an averaging trend as study area scale increases from small to large.The importance of environmental factors varies greatly with the 60 m grid unit,but it tends to be consistent to some extent in the 30 m grid unit and the slope unit.
基金Project supported by the National Natural Science Foundation of China(Nos.62162012,62173278,and 62072061)the Science and Technology Support Program of Guizhou Province,China(No.QKHZC2021YB531)+3 种基金the Natural Science Research Project of Department of Education of Guizhou Province,China(Nos.QJJ2022015 and QJJ2022047)the Science and Technology Foundation of Guizhou Province,China(Nos.QKHJCZK2022YB195,QKHJCZK2022YB197,and QKHJCZK2023YB143)the Scientific Research Platform Project of Guizhou Minzu University,China(No.GZMUSYS202104)the 7^(th) Batch High-Level Innovative Talent Project of Guizhou Province,China。
文摘To address the imbalance problem between supply and demand for taxis and passengers,this paper proposes a distributed ensemble empirical mode decomposition with normalization of spatial attention mechanism based bi-directional gated recurrent unit(EEMDN-SABiGRU)model on Spark for accurate passenger hotspot prediction.It focuses on reducing blind cruising costs,improving carrying efficiency,and maximizing incomes.Specifically,the EEMDN method is put forward to process the passenger hotspot data in the grid to solve the problems of non-smooth sequences and the degradation of prediction accuracy caused by excessive numerical differences,while dealing with the eigenmodal EMD.Next,a spatial attention mechanism is constructed to capture the characteristics of passenger hotspots in each grid,taking passenger boarding and alighting hotspots as weights and emphasizing the spatial regularity of passengers in the grid.Furthermore,the bi-directional GRU algorithm is merged to deal with the problem that GRU can obtain only the forward information but ignores the backward information,to improve the accuracy of feature extraction.Finally,the accurate prediction of passenger hotspots is achieved based on the EEMDN-SABiGRU model using real-world taxi GPS trajectory data in the Spark parallel computing framework.The experimental results demonstrate that based on the four datasets in the 00-grid,compared with LSTM,EMDLSTM,EEMD-LSTM,GRU,EMD-GRU,EEMD-GRU,EMDN-GRU,CNN,and BP,the mean absolute percentage error,mean absolute error,root mean square error,and maximum error values of EEMDN-SABiGRU decrease by at least 43.18%,44.91%,55.04%,and 39.33%,respectively.
文摘Objective This study aimed to explore the mortality prediction of patients with cerebrovascular diseases inthe intensive care unit(ICU)by examining the important signals during different periods of admission in theICU,which is considered one of the new topics in the medical field.Several approaches have been proposed forprediction in this area.Each of these methods has been able to predict mortality somewhat,but many of thesetechniques require recording a large amount of data from the patients,where recording all data is not possiblein most cases;at the same time,this study focused only on heart rate variability(HRV)and systolic and diastolicblood pressure.Methods The ICU data used for the challenge were extracted from the Multiparameter Intelligent Monitoring inIntensive Care II(MIMIC-II)Clinical Database.The proposed algorithm was evaluated using data from 88 cerebrovascular ICU patients,48 men and 40 women,during their first 48 hours of ICU stay.The electrocardiogram(ECG)signals are related to lead II,and the sampling frequency is 125 Hz.The time of admission and time ofdeath are labeled in all data.In this study,the mortality prediction in patients with cerebral ischemia is evaluated using the features extracted from the return map generated by the signal of HRV and blood pressure.Topredict the patient’s future condition,the combination of features extracted from the return mapping generatedby the HRV signal,such as angle(𝛼),area(A),and various parameters generated by systolic and diastolic bloodpressure,including DBPMax−Min SBPSD have been used.Also,to select the best feature combination,the geneticalgorithm(GA)and mutual information(MI)methods were used.Paired sample t-test statistical analysis was usedto compare the results of two episodes(death and non-death episodes).The P-value for detecting the significancelevel was considered less than 0.005.Results The results indicate that the new approach presented in this paper can be compared with other methodsor leads to better results.The best combinatio
文摘针对帧内实施可逆水印造成误差传播的问题,基于高效视频编码(High Efficiency Video Coding,HEVC)标准,提出一种用于消除帧内误差传播的可逆水印算法。算法充分考虑了HEVC新的编码特性,对帧内嵌入水印后的误差传播情况进行了分析,随后给出了在帧内4×4预测单元中嵌入水印后不会引起误差传播的条件;最后选出满足条件的4×4系数块,采用"和不变"方法将水印自适应地嵌入其量化离散正弦变换系数中。出于减小码率增长的考虑,全0系数块不嵌入水印。实验结果表明,该算法能够有效地消除帧内由嵌入水印引起的误差传播,从而减小视觉失真。同时,算法对码率的影响也较小。