期刊文献+
共找到446篇文章
< 1 2 23 >
每页显示 20 50 100
黄土高原地区土壤可蚀性及其应用研究 被引量:70
1
作者 张科利 蔡永明 +1 位作者 刘宝元 江忠善 《生态学报》 CAS CSCD 北大核心 2001年第10期1687-1695,共9页
通过回顾已有的成果 ,分析评价了我国土壤可蚀性研究的进展及存在的问题 ,提出我国土壤可蚀性研究中的标准小区定义。运用野外观测资料 ,研究计算了黄土高原地区土壤可蚀性指标值。结果表明 ,陕北和晋西北一带黄土可蚀性 K值变化于 0 .3... 通过回顾已有的成果 ,分析评价了我国土壤可蚀性研究的进展及存在的问题 ,提出我国土壤可蚀性研究中的标准小区定义。运用野外观测资料 ,研究计算了黄土高原地区土壤可蚀性指标值。结果表明 ,陕北和晋西北一带黄土可蚀性 K值变化于 0 .3~ 0 .7之间 ,并且有以陕西子洲、绥德一带为最大 ,以此为中心 ,向南、向北和向东都减少的变化趋势。 展开更多
关键词 黄土 侵蚀预报 可蚀性 标准小区 土壤侵蚀 应用
下载PDF
基于免疫神经网络模型的瓦斯浓度智能预测 被引量:38
2
作者 王其军 程久龙 《煤炭学报》 EI CAS CSCD 北大核心 2008年第6期665-669,共5页
将免疫算法与神经网络理论相结合,提出免疫神经网络预测模型以预测采煤工作面瓦斯浓度,并对如何处理时间序列的数据模式问题进行研究.引入延迟单元,将原始输入样本转换为具有延迟特征的新样本,采用延迟算子的输出样本施加到网络预测模型... 将免疫算法与神经网络理论相结合,提出免疫神经网络预测模型以预测采煤工作面瓦斯浓度,并对如何处理时间序列的数据模式问题进行研究.引入延迟单元,将原始输入样本转换为具有延迟特征的新样本,采用延迟算子的输出样本施加到网络预测模型,可以获得浓度时段变幅的信息,这对于提高网络对瓦斯扩散过程的拟合精度和预测精度十分有效.结合某矿井瓦斯预报实例,经过与现场实测值相比较,最大预测误差为6.86%,最小预测误差为2.36%,平均误差为4.61%,所建模型精度的拟合值与预测值都与实际数据吻合得较好,各测点的误差值均在许可的范围内.结果表明,基于免疫神经网络的瓦斯浓度预测模型,能够较好地识别采煤工作面瓦斯扩散的演进规律,对瓦斯浓度能进行合理预报,且该方法具有预报时间快、节省费用的特点. 展开更多
关键词 免疫神经网络 瓦斯浓度 预测模型 延迟单元 矿井工作环境
下载PDF
考虑风电爬坡事件的鲁棒机组组合 被引量:37
3
作者 艾小猛 韩杏宁 +2 位作者 文劲宇 姚伟 罗卫华 《电工技术学报》 EI CSCD 北大核心 2015年第24期188-195,共8页
风电功率具有强波动性和不确定性,其强波动性主要表现为较大的爬坡事件,而其强不确定性则表现为风电功率难以精确预测,两者都给电力系统运行带来了新的挑战。针对爬坡事件,建立了考虑风电爬坡事件约束的精确线性化的机组组合模型;针对... 风电功率具有强波动性和不确定性,其强波动性主要表现为较大的爬坡事件,而其强不确定性则表现为风电功率难以精确预测,两者都给电力系统运行带来了新的挑战。针对爬坡事件,建立了考虑风电爬坡事件约束的精确线性化的机组组合模型;针对风电功率难以精确预测,考虑用其预测值以及区间预测上、下限来描述风电场出力,从而通过线性鲁棒优化理论将该随机问题转化为一确定性问题后进行求解。以含风电的10机39节点系统为例进行算例分析,结果表明,对于一般的风电爬坡事件,爬坡事件约束是不起作用的,但对于风电波动速率较大的情况,考虑爬坡事件更能保证系统安全。由于所建模型为一线性混整规划模型,故可实现大规模求解并用于实际系统。 展开更多
关键词 爬坡事件 预测误差 机组组合 鲁棒优化 风电功率
下载PDF
考虑风电不确定性的风火打捆直流外送系统的日前机组组合模型 被引量:11
4
作者 李文莉 付聪聪 张海波 《电力系统及其自动化学报》 CSCD 北大核心 2018年第8期38-43,共6页
大规模风电并网给电力系统的优化运行带来新的挑战。根据风电场历史数据,分别采用区间预测和场景分析两种方法对未来的风电功率进行不确定描述,建立了风电预测信息不同描述方式下的考虑直流功率调整约束的日前机组组合模型。算例分析表... 大规模风电并网给电力系统的优化运行带来新的挑战。根据风电场历史数据,分别采用区间预测和场景分析两种方法对未来的风电功率进行不确定描述,建立了风电预测信息不同描述方式下的考虑直流功率调整约束的日前机组组合模型。算例分析表明,所采用的风电预测方法能够准确地反映真实的风电功率信息,建立的机组组合模型能够针对不同的预测信息做出优化决策。最后对单位弃风成本及直流功率单位调节成本对优化结果的影响进行分析比较,为风火打捆直流外送系统日前计划的制定提供建议。 展开更多
关键词 风电功率预测 不确定性 区间估计 场景分析 机组组合
下载PDF
顺北油田顺北4号断裂带中段断控储集体连通性评价 被引量:7
5
作者 刘军 廖茂辉 +3 位作者 王来源 龚伟 黄超 查明 《新疆石油地质》 CAS CSCD 北大核心 2023年第4期456-464,共9页
顺北4号走滑断裂带断控储集体类型多样,各储集层空间位置,影响储集体连通能力,制约不同部位油井产量。通过探讨一种在钻前评价目标储集体连通能力的方法,对顺北4号走滑断裂带中段断控储集体连通性展开评价。结果表明,顺北4号走滑断裂带... 顺北4号走滑断裂带断控储集体类型多样,各储集层空间位置,影响储集体连通能力,制约不同部位油井产量。通过探讨一种在钻前评价目标储集体连通能力的方法,对顺北4号走滑断裂带中段断控储集体连通性展开评价。结果表明,顺北4号走滑断裂带中段断控储集体共划分为4个分隔单元,各分隔单元内部洞穴连通率均超过50%,高角度裂缝延伸,垂向洞穴累计厚度大,连通能力较强,分隔单元3与分隔单元4内部的有利目标获取高产概率较大。 展开更多
关键词 顺北油田 顺北4号走滑断裂带中段 断控储集体 连通性评价 三维可视化 裂缝预测 分隔单元
下载PDF
计及风电不确定性及排放影响的机组组合策略及其效益评估 被引量:11
6
作者 邢家维 何志恒 +2 位作者 金能 戎子睿 林湘宁 《智慧电力》 北大核心 2018年第7期7-13,18,共8页
为应对含风电的电力系统在调度过程中风电的波动性和预测不确定性,提出了备用容量配置与风电预测误差概率评估相协调的应对方案,将备用容量补偿和预测误差补偿成本量化引入机组组合模型,建立风电综合补偿成本模型;将经济、政策、环境等... 为应对含风电的电力系统在调度过程中风电的波动性和预测不确定性,提出了备用容量配置与风电预测误差概率评估相协调的应对方案,将备用容量补偿和预测误差补偿成本量化引入机组组合模型,建立风电综合补偿成本模型;将经济、政策、环境等因素计入火电机组排污成本,给出了含风电的电力系统机组组合策略及其效益评估。算例表明,该策略能够用于形成含风电的电力系统机组组合的最佳配置,有效减少风电波动性和不确定性的影响。 展开更多
关键词 风电 预测误差 概率密度分布 备用容量 机组组合
下载PDF
Prediction of landslide displacement with dynamic features using intelligent approaches 被引量:8
7
作者 Yonggang Zhang Jun Tang +4 位作者 Yungming Cheng Lei Huang Fei Guo Xiangjie Yin Na Li 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2022年第3期539-549,共11页
Landslide displacement prediction can enhance the efficacy of landslide monitoring system,and the prediction of the periodic displacement is particularly challenging.In the previous studies,static regression models(e.... Landslide displacement prediction can enhance the efficacy of landslide monitoring system,and the prediction of the periodic displacement is particularly challenging.In the previous studies,static regression models(e.g.,support vector machine(SVM))were mostly used for predicting the periodic displacement.These models may have bad performances,when the dynamic features of landslide triggers are incorporated.This paper proposes a method for predicting the landslide displacement in a dynamic manner,based on the gated recurrent unit(GRU)neural network and complete ensemble empirical decomposition with adaptive noise(CEEMDAN).The CEEMDAN is used to decompose the training data,and the GRU is subsequently used for predicting the periodic displacement.Implementation procedures of the proposed method were illustrated by a case study in the Caojiatuo landslide area,and SVM was also adopted for the periodic displacement prediction.This case study shows that the predictors obtained by SVM are inaccurate,as the landslide displacement is in a pronouncedly step-wise manner.By contrast,the accuracy can be significantly improved using the dynamic predictive method.This paper reveals the significance of capturing the dynamic features of the inputs in the training process,when the machine learning models are adopted to predict the landslide displacement. 展开更多
关键词 Landslide displacement prediction Artificial intelligent methods Gated recurrent unit neural network CEEMDAN Landslide monitoring
下载PDF
基于GJB/Z 299C的智能电能表计量单元可靠性预计 被引量:8
8
作者 黄友朋 路韬 +1 位作者 党三磊 陈亮 《哈尔滨理工大学学报》 CAS 北大核心 2021年第6期104-111,共8页
为提高国产智能电能表可靠性,提出在智能电能表设计阶段进行可靠性预计,以计量单元为例,依据GJB/Z299C,给出了详细的可靠性预计方法。根据设计电路原理图,进行集成电路/元器件归类;再根据集成电路/元器件类别,基于GJB/Z299C,设计相应的... 为提高国产智能电能表可靠性,提出在智能电能表设计阶段进行可靠性预计,以计量单元为例,依据GJB/Z299C,给出了详细的可靠性预计方法。根据设计电路原理图,进行集成电路/元器件归类;再根据集成电路/元器件类别,基于GJB/Z299C,设计相应的可靠性信息表;结合工程应用与可靠性信息表,计算出各集成电路/元器件的失效率;最终得到计量单元的失效率。实践结果表明,该方法具有可行性及推广价值。 展开更多
关键词 智能电能表 可靠性预计 计量单元 GJB/Z 299C
下载PDF
Landslide susceptibility prediction using slope unit-based machine learning models considering the heterogeneity of conditioning factors 被引量:4
9
作者 Zhilu Chang Filippo Catani +4 位作者 Faming Huang Gengzhe Liu Sansar Raj Meena Jinsong Huang Chuangbing Zhou 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第5期1127-1143,共17页
To perform landslide susceptibility prediction(LSP),it is important to select appropriate mapping unit and landslide-related conditioning factors.The efficient and automatic multi-scale segmentation(MSS)method propose... To perform landslide susceptibility prediction(LSP),it is important to select appropriate mapping unit and landslide-related conditioning factors.The efficient and automatic multi-scale segmentation(MSS)method proposed by the authors promotes the application of slope units.However,LSP modeling based on these slope units has not been performed.Moreover,the heterogeneity of conditioning factors in slope units is neglected,leading to incomplete input variables of LSP modeling.In this study,the slope units extracted by the MSS method are used to construct LSP modeling,and the heterogeneity of conditioning factors is represented by the internal variations of conditioning factors within slope unit using the descriptive statistics features of mean,standard deviation and range.Thus,slope units-based machine learning models considering internal variations of conditioning factors(variant slope-machine learning)are proposed.The Chongyi County is selected as the case study and is divided into 53,055 slope units.Fifteen original slope unit-based conditioning factors are expanded to 38 slope unit-based conditioning factors through considering their internal variations.Random forest(RF)and multi-layer perceptron(MLP)machine learning models are used to construct variant Slope-RF and Slope-MLP models.Meanwhile,the Slope-RF and Slope-MLP models without considering the internal variations of conditioning factors,and conventional grid units-based machine learning(Grid-RF and MLP)models are built for comparisons through the LSP performance assessments.Results show that the variant Slopemachine learning models have higher LSP performances than Slope-machine learning models;LSP results of variant Slope-machine learning models have stronger directivity and practical application than Grid-machine learning models.It is concluded that slope units extracted by MSS method can be appropriate for LSP modeling,and the heterogeneity of conditioning factors within slope units can more comprehensively reflect the relationships between conditioning 展开更多
关键词 Landslide susceptibility prediction(LSP) Slope unit Multi-scale segmentation method(MSS) Heterogeneity of conditioning factors Machine learning models
下载PDF
Price prediction of power transformer materials based on CEEMD and GRU
10
作者 Yan Huang Yufeng Hu +2 位作者 Liangzheng Wu Shangyong Wen Zhengdong Wan 《Global Energy Interconnection》 EI CSCD 2024年第2期217-227,共11页
The rapid growth of the Chinese economy has fueled the expansion of power grids.Power transformers are key equipment in power grid projects,and their price changes have a significant impact on cost control.However,the... The rapid growth of the Chinese economy has fueled the expansion of power grids.Power transformers are key equipment in power grid projects,and their price changes have a significant impact on cost control.However,the prices of power transformer materials manifest as nonsmooth and nonlinear sequences.Hence,estimating the acquisition costs of power grid projects is difficult,hindering the normal operation of power engineering construction.To more accurately predict the price of power transformer materials,this study proposes a method based on complementary ensemble empirical mode decomposition(CEEMD)and gated recurrent unit(GRU)network.First,the CEEMD decomposed the price series into multiple intrinsic mode functions(IMFs).Multiple IMFs were clustered to obtain several aggregated sequences based on the sample entropy of each IMF.Then,an empirical wavelet transform(EWT)was applied to the aggregation sequence with a large sample entropy,and the multiple subsequences obtained from the decomposition were predicted by the GRU model.The GRU model was used to directly predict the aggregation sequences with a small sample entropy.In this study,we used authentic historical pricing data for power transformer materials to validate the proposed approach.The empirical findings demonstrated the efficacy of our method across both datasets,with mean absolute percentage errors(MAPEs)of less than 1%and 3%.This approach holds a significant reference value for future research in the field of power transformer material price prediction. 展开更多
关键词 Power transformer material Price prediction Complementary ensemble empirical mode decomposition Gated recurrent unit Empirical wavelet transform
下载PDF
Adaptive spatial-temporal graph attention network for traffic speed prediction
11
作者 ZHANG Xijun ZHANG Baoqi +2 位作者 ZHANG Hong NIE Shengyuan ZHANG Xianli 《High Technology Letters》 EI CAS 2024年第3期221-230,共10页
Considering the nonlinear structure and spatial-temporal correlation of traffic network,and the influence of potential correlation between nodes of traffic network on the spatial features,this paper proposes a traffic... Considering the nonlinear structure and spatial-temporal correlation of traffic network,and the influence of potential correlation between nodes of traffic network on the spatial features,this paper proposes a traffic speed prediction model based on the combination of graph attention network with self-adaptive adjacency matrix(SAdpGAT)and bidirectional gated recurrent unit(BiGRU).First-ly,the model introduces graph attention network(GAT)to extract the spatial features of real road network and potential road network respectively in spatial dimension.Secondly,the spatial features are input into BiGRU to extract the time series features.Finally,the prediction results of the real road network and the potential road network are connected to generate the final prediction results of the model.The experimental results show that the prediction accuracy of the proposed model is im-proved obviously on METR-LA and PEMS-BAY datasets,which proves the advantages of the pro-posed spatial-temporal model in traffic speed prediction. 展开更多
关键词 traffic speed prediction spatial-temporal correlation self-adaptive adjacency ma-trix graph attention network(GAT) bidirectional gated recurrent unit(BiGRU)
下载PDF
Uncertainties of landslide susceptibility prediction:influences of different study area scales and mapping unit scales
12
作者 Faming Huang Yu Cao +4 位作者 Wenbin Li Filippo Catani Guquan Song Jinsong Huang Changshi Yu 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第2期143-172,共30页
This study aims to investigate the effects of different mapping unit scales and study area scales on the uncertainty rules of landslide susceptibility prediction(LSP).To illustrate various study area scales,Ganzhou Ci... This study aims to investigate the effects of different mapping unit scales and study area scales on the uncertainty rules of landslide susceptibility prediction(LSP).To illustrate various study area scales,Ganzhou City in China,its eastern region(Ganzhou East),and Ruijin County in Ganzhou East were chosen.Different mapping unit scales are represented by grid units with spatial resolution of 30 and 60 m,as well as slope units that were extracted by multi-scale segmentation method.The 3855 landslide locations and 21 typical environmental factors in Ganzhou City are first determined to create spatial datasets with input-outputs.Then,landslide susceptibility maps(LSMs)of Ganzhou City,Ganzhou East and Ruijin County are pro-duced using a support vector machine(SVM)and random forest(RF),respectively.The LSMs of the above three regions are then extracted by mask from the LSM of Ganzhou City,along with the LSMs of Ruijin County from Ganzhou East.Additionally,LSMs of Ruijin at various mapping unit scales are generated in accordance.Accuracy and landslide suscepti-bility indexes(LSIs)distribution are used to express LSP uncertainties.The LSP uncertainties under grid units significantly decrease as study area scales decrease from Ganzhou City,Ganzhou East to Ruijin County,whereas those under slope units are less affected by study area scales.Of course,attentions should also be paid to the broader representativeness of large study areas.The LSP accuracy of slope units increases by about 6%–10%compared with those under grid units with 30 m and 60 m resolution in the same study area's scale.The significance of environmental factors exhibits an averaging trend as study area scale increases from small to large.The importance of environmental factors varies greatly with the 60 m grid unit,but it tends to be consistent to some extent in the 30 m grid unit and the slope unit. 展开更多
关键词 Landslide susceptibility prediction Uncertainty analysis Study areas scales Mapping unit scales Slope units Random forest
下载PDF
融合媒体信息和信号分解的股票市场深度学习预测
13
作者 刘广 易鸿 《计算机科学》 CSCD 北大核心 2024年第S01期1092-1103,共12页
对股票市场未来回报和风险的精确预测不仅能够帮助理性投资者更加合理有效地进行投资,也能够为政策制定者和投资者提供有用的指导。利用金融新闻标题文本,通过词嵌入模型和机器学习等文本分析方法,构建考虑新闻累积效应的投资者时闻累... 对股票市场未来回报和风险的精确预测不仅能够帮助理性投资者更加合理有效地进行投资,也能够为政策制定者和投资者提供有用的指导。利用金融新闻标题文本,通过词嵌入模型和机器学习等文本分析方法,构建考虑新闻累积效应的投资者时闻累积情绪指数表征投资者情绪;以上证指数为例,采用变分模式分解(VMD)方法将指数波动数据分解为各种内在固有模式进行实证分析。最后,引入双向门控循环单元(BiGRU)作为深度学习模型进行股票预测。结果表明,投资者情绪指数显著影响上证指数波动,并且积极情绪和消极情绪的影响是不对称的;考量投资者情绪指标进行信号分解,能够有效提高股票的预测性能,相对于单纯分析股票时间序列的BiGRU预测模型,VMD-BiGRU模型的MAE,RMSE,RMSPE,MAPE等指标降低超过30%;在基准场景下,VMD-BiGRU模型性能优于多个计量经济模型和机器学习模型,对于收益率和波动率预测的MAE,RMSE,RMSPE,MAPE等指标普遍降低超过40%;模型在五粮液、工商银行、科大讯飞3只个股的推广中保持着同样稳定精确的预测效果。 展开更多
关键词 股票预测 投资者情绪 新闻媒体信息 信号分解 门控单元
下载PDF
全国超大型、大型金矿定量预测方法研究 被引量:4
14
作者 王世称 杨毅恒 +1 位作者 严光生 李景朝 《地质论评》 CAS CSCD 北大核心 2000年第z1期17-24,共8页
20世纪70年代以来,大型、超大型矿床研究是当今地学界的热门话题之一,在我国开展全国性大型、超大型金矿综合信息成矿预测尚属首次。本文利用全国地质、地球物理、地球化学和遥感等资料,按照"鹤立鸡群"的观点,以大型、超大型... 20世纪70年代以来,大型、超大型矿床研究是当今地学界的热门话题之一,在我国开展全国性大型、超大型金矿综合信息成矿预测尚属首次。本文利用全国地质、地球物理、地球化学和遥感等资料,按照"鹤立鸡群"的观点,以大型、超大型金矿床密集区为模型单元,以金矿床密集区和异常密集区为预测单元,在充分分析控矿因素的基础上,构造刻划矿床变大、变富的因变量,应用双重逐步回归分析方法,对全国大型、超大型金矿开展了定量预测。 展开更多
关键词 大型、超大型矿床 模型单元 预测单元 矿床密集区 双重逐步回归分析
下载PDF
A distributed EEMDN-SABiGRU model on Spark for passenger hotspot prediction
15
作者 Dawen XIA Jian GENG +4 位作者 Ruixi HUANG Bingqi SHEN Yang HU Yantao LI Huaqing LI 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2023年第9期1316-1331,共16页
To address the imbalance problem between supply and demand for taxis and passengers,this paper proposes a distributed ensemble empirical mode decomposition with normalization of spatial attention mechanism based bi-di... To address the imbalance problem between supply and demand for taxis and passengers,this paper proposes a distributed ensemble empirical mode decomposition with normalization of spatial attention mechanism based bi-directional gated recurrent unit(EEMDN-SABiGRU)model on Spark for accurate passenger hotspot prediction.It focuses on reducing blind cruising costs,improving carrying efficiency,and maximizing incomes.Specifically,the EEMDN method is put forward to process the passenger hotspot data in the grid to solve the problems of non-smooth sequences and the degradation of prediction accuracy caused by excessive numerical differences,while dealing with the eigenmodal EMD.Next,a spatial attention mechanism is constructed to capture the characteristics of passenger hotspots in each grid,taking passenger boarding and alighting hotspots as weights and emphasizing the spatial regularity of passengers in the grid.Furthermore,the bi-directional GRU algorithm is merged to deal with the problem that GRU can obtain only the forward information but ignores the backward information,to improve the accuracy of feature extraction.Finally,the accurate prediction of passenger hotspots is achieved based on the EEMDN-SABiGRU model using real-world taxi GPS trajectory data in the Spark parallel computing framework.The experimental results demonstrate that based on the four datasets in the 00-grid,compared with LSTM,EMDLSTM,EEMD-LSTM,GRU,EMD-GRU,EEMD-GRU,EMDN-GRU,CNN,and BP,the mean absolute percentage error,mean absolute error,root mean square error,and maximum error values of EEMDN-SABiGRU decrease by at least 43.18%,44.91%,55.04%,and 39.33%,respectively. 展开更多
关键词 Passenger hotspot prediction Ensemble empirical mode decomposition(EEMD) Spatial attention mechanism Bi-directional gated recurrent unit(BiGRU) GPS trajectory SPARK
原文传递
基于空间插值技术的降雨型滑坡下垫面岩土体力学参数取值研究 被引量:4
16
作者 王凯 张少杰 韦方强 《自然灾害学报》 CSCD 北大核心 2019年第5期207-219,共13页
当前的区域滑坡预报单元内部岩土体力学参数取值基于随机取值方法,未能考虑不同岩性和风化程度对取值精度的影响。本文将岩土体力学参数视为区域化变量,提出一种按岩性边界进行克里金空间插值的取值方法。首先在不同岩性区域内部进行高... 当前的区域滑坡预报单元内部岩土体力学参数取值基于随机取值方法,未能考虑不同岩性和风化程度对取值精度的影响。本文将岩土体力学参数视为区域化变量,提出一种按岩性边界进行克里金空间插值的取值方法。首先在不同岩性区域内部进行高密度且分布均匀的野外取样,通过室内液塑限、直剪试验获取每个样本点在塑限和液限状态下的力学参数。然后,对于不同岩性区域以岩性边界作为插值边界以考虑岩性差异的影响;同一岩性区域在高密度的采样点基础上,采用空间插值考虑风化程度的影响。克里金插值结果表明,本文所建议方法的相对误差能够满足预报单元取值精度要求,且对不同岩性边界附近的预报单元具有更高的取值精度。研究结果为预报单元的岩土体力学参数精细化取值提供新的思路。 展开更多
关键词 区域滑坡 预报单元 力学参数 岩性边界 空间插值
下载PDF
A predictive model of death from cerebrovascular diseases in intensive care units
17
作者 Mohammad Karimi Moridani Seyed Kamaledin Setarehdan +1 位作者 Ali Motie Nasrabadi Esmaeil Hajinasrollah 《Intelligent Medicine》 EI CSCD 2023年第4期267-279,共13页
Objective This study aimed to explore the mortality prediction of patients with cerebrovascular diseases inthe intensive care unit(ICU)by examining the important signals during different periods of admission in theICU... Objective This study aimed to explore the mortality prediction of patients with cerebrovascular diseases inthe intensive care unit(ICU)by examining the important signals during different periods of admission in theICU,which is considered one of the new topics in the medical field.Several approaches have been proposed forprediction in this area.Each of these methods has been able to predict mortality somewhat,but many of thesetechniques require recording a large amount of data from the patients,where recording all data is not possiblein most cases;at the same time,this study focused only on heart rate variability(HRV)and systolic and diastolicblood pressure.Methods The ICU data used for the challenge were extracted from the Multiparameter Intelligent Monitoring inIntensive Care II(MIMIC-II)Clinical Database.The proposed algorithm was evaluated using data from 88 cerebrovascular ICU patients,48 men and 40 women,during their first 48 hours of ICU stay.The electrocardiogram(ECG)signals are related to lead II,and the sampling frequency is 125 Hz.The time of admission and time ofdeath are labeled in all data.In this study,the mortality prediction in patients with cerebral ischemia is evaluated using the features extracted from the return map generated by the signal of HRV and blood pressure.Topredict the patient’s future condition,the combination of features extracted from the return mapping generatedby the HRV signal,such as angle(𝛼),area(A),and various parameters generated by systolic and diastolic bloodpressure,including DBPMax−Min SBPSD have been used.Also,to select the best feature combination,the geneticalgorithm(GA)and mutual information(MI)methods were used.Paired sample t-test statistical analysis was usedto compare the results of two episodes(death and non-death episodes).The P-value for detecting the significancelevel was considered less than 0.005.Results The results indicate that the new approach presented in this paper can be compared with other methodsor leads to better results.The best combinatio 展开更多
关键词 Death prediction Cerebrovascular diseases Intensive care unit Heart rate variability Systolic and diastolic blood pressure Return map
原文传递
消除帧内误差传播的HEVC可逆水印算法 被引量:4
18
作者 张明辉 冯桂 《信号处理》 CSCD 北大核心 2016年第2期220-226,共7页
针对帧内实施可逆水印造成误差传播的问题,基于高效视频编码(High Efficiency Video Coding,HEVC)标准,提出一种用于消除帧内误差传播的可逆水印算法。算法充分考虑了HEVC新的编码特性,对帧内嵌入水印后的误差传播情况进行了分析,随后... 针对帧内实施可逆水印造成误差传播的问题,基于高效视频编码(High Efficiency Video Coding,HEVC)标准,提出一种用于消除帧内误差传播的可逆水印算法。算法充分考虑了HEVC新的编码特性,对帧内嵌入水印后的误差传播情况进行了分析,随后给出了在帧内4×4预测单元中嵌入水印后不会引起误差传播的条件;最后选出满足条件的4×4系数块,采用"和不变"方法将水印自适应地嵌入其量化离散正弦变换系数中。出于减小码率增长的考虑,全0系数块不嵌入水印。实验结果表明,该算法能够有效地消除帧内由嵌入水印引起的误差传播,从而减小视觉失真。同时,算法对码率的影响也较小。 展开更多
关键词 高效视频编码 预测单元 量化离散正弦变换 误差传播
下载PDF
基于运动特性的HEVC帧间模式快速决策算法 被引量:3
19
作者 张亚军 李强 《计算机工程与应用》 CSCD 北大核心 2018年第23期195-202,270,共9页
针对高性能视频编码采用四叉树结构大大增加了编码复杂度的问题,提出了一种基于运动特性的帧间模式快速决策算法。首先,对不同运动区域下的编码单元(Coding Unit,CU)块,利用当前CU与空时域相邻CU深度相关性减少当前CU深度的遍历范围;然... 针对高性能视频编码采用四叉树结构大大增加了编码复杂度的问题,提出了一种基于运动特性的帧间模式快速决策算法。首先,对不同运动区域下的编码单元(Coding Unit,CU)块,利用当前CU与空时域相邻CU深度相关性减少当前CU深度的遍历范围;然后,依据当前CU与其时空域相邻CU及上一深度CU对应的预测单元(Prediction Unit,PU)在空间划分上的相似性,减少PU模式的遍历范围,加速帧间预测过程。实验结果表明,相比于HM16.9,在不同编码接入方式下该算法可平均降低54%左右的编码时间,且输出比特率增加较少。 展开更多
关键词 高性能视频编码 编码单元 预测单元 运动特征 时空域相关性
下载PDF
面向高比例新能源电网的中长期市场多时序校核研究 被引量:3
20
作者 朱磊 宋少群 +3 位作者 郑旭冬 赖永生 毛文照 王珍 《电力大数据》 2021年第10期37-44,共8页
为适应大规模新能源接入下中长期电力市场交易安全校核的需要,提出了覆盖月度、周、日前三个时序的安全校核机制,以解决新能源预测偏差对校核结果的影响。多时序安全校核的基本思路是通过月度、周、日前等多时序协调,在保障预期发电量... 为适应大规模新能源接入下中长期电力市场交易安全校核的需要,提出了覆盖月度、周、日前三个时序的安全校核机制,以解决新能源预测偏差对校核结果的影响。多时序安全校核的基本思路是通过月度、周、日前等多时序协调,在保障预期发电量执行的前提下,最大限度保障剩余电量执行公平性。月度安全校核采用极端场景校核方法,提出预期发电量指标,作为市场成员交易决策的参考。周安全校核将以预期发电量公平为目标,确定机组组合初步方案。日前安全校核与实际发电运行紧密结合,将在保障机组组合初步方案执行的前提下,合理调整前期执行偏差,保障进度公平。在IEEE30节点系统基础上,结合某省区实际数据构造算例,对不同时序校核结果做了验证分析。结果表明,通过多时序协调互动,安全校核结果能更有序地引导市场成员合理开展市场交易,降低新能源预测偏差对交易结果的影响。 展开更多
关键词 安全校核 中长期电力市场 新能源 预测偏差 机组组合
下载PDF
上一页 1 2 23 下一页 到第
使用帮助 返回顶部