An accurate short-term wind speed prediction algorithm based on the efficient kernel ridge pseudo inverse neural network (KRPINN) variants is proposed in this paper. The use of nonlinear kernel functions in pseudo i...An accurate short-term wind speed prediction algorithm based on the efficient kernel ridge pseudo inverse neural network (KRPINN) variants is proposed in this paper. The use of nonlinear kernel functions in pseudo inverse neural networks eliminates the trial and error approach of choosing the number of hidden layer neurons and their activation functions. The robustness of the proposed method has been validated in comparison with other models such as pseudo inverse radial basis function (PIRBF) and Legendre tanh activation function based neural network, i.e., PILNNT, whose input weights to the hidden layer weights are optimized using an adaptive firefly algorithm, i.e., FFA. However, since the individual kernel functions based KRPINN may not be able to produce accurate forecasts under chaotically varying wind speed conditions, a linear combination of individual kernel functions is used to build the multi kernel ridge pseudo inverse neural network (MK-RPINN) for providing improved forecasting accuracy, generalization, and stability of the wind speed prediction model. Several case studies have been presented to validate the accuracy of the short-term wind speed prediction models using the real world wind speed data from a wind farm in the Wyoming State of USA over time horizons varying from 10 minutes to 5 hours.展开更多
In order to find the convergence rate of finite sample discrete entropies of a white Gaussian noise(WGN), Brown entropy algorithm is numerically tested.With the increase of sample size, the curves of these finite samp...In order to find the convergence rate of finite sample discrete entropies of a white Gaussian noise(WGN), Brown entropy algorithm is numerically tested.With the increase of sample size, the curves of these finite sample discrete entropies are asymptotically close to their theoretical values.The confidence intervals of the sample Brown entropy are narrower than those of the sample discrete entropy calculated from its differential entropy, which is valid only in the case of a small sample size of WGN. The differences between sample Brown entropies and their theoretical values are fitted by two rational functions exactly, and the revised Brown entropies are more efficient. The application to the prediction of wind speed indicates that the variances of resampled time series increase almost exponentially with the increase of resampling period.展开更多
文摘An accurate short-term wind speed prediction algorithm based on the efficient kernel ridge pseudo inverse neural network (KRPINN) variants is proposed in this paper. The use of nonlinear kernel functions in pseudo inverse neural networks eliminates the trial and error approach of choosing the number of hidden layer neurons and their activation functions. The robustness of the proposed method has been validated in comparison with other models such as pseudo inverse radial basis function (PIRBF) and Legendre tanh activation function based neural network, i.e., PILNNT, whose input weights to the hidden layer weights are optimized using an adaptive firefly algorithm, i.e., FFA. However, since the individual kernel functions based KRPINN may not be able to produce accurate forecasts under chaotically varying wind speed conditions, a linear combination of individual kernel functions is used to build the multi kernel ridge pseudo inverse neural network (MK-RPINN) for providing improved forecasting accuracy, generalization, and stability of the wind speed prediction model. Several case studies have been presented to validate the accuracy of the short-term wind speed prediction models using the real world wind speed data from a wind farm in the Wyoming State of USA over time horizons varying from 10 minutes to 5 hours.
文摘In order to find the convergence rate of finite sample discrete entropies of a white Gaussian noise(WGN), Brown entropy algorithm is numerically tested.With the increase of sample size, the curves of these finite sample discrete entropies are asymptotically close to their theoretical values.The confidence intervals of the sample Brown entropy are narrower than those of the sample discrete entropy calculated from its differential entropy, which is valid only in the case of a small sample size of WGN. The differences between sample Brown entropies and their theoretical values are fitted by two rational functions exactly, and the revised Brown entropies are more efficient. The application to the prediction of wind speed indicates that the variances of resampled time series increase almost exponentially with the increase of resampling period.