期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
灰色-进化神经网络模型在深埋隧道围岩变形预测中的应用
被引量:
22
1
作者
吴益平
李亚伟
《岩土力学》
EI
CAS
CSCD
北大核心
2008年第S01期263-266,共4页
由于深埋隧道围岩的变形受到构造、应力场、地下水、开挖方式等复杂因素的综合影响,具有位移时间序列的单调增长的特殊性和非线性,运用响应成分模型将隧道围岩位移量分解成具有确定性的趋势项和具有不确定性的随机项。建立灰色–进化神...
由于深埋隧道围岩的变形受到构造、应力场、地下水、开挖方式等复杂因素的综合影响,具有位移时间序列的单调增长的特殊性和非线性,运用响应成分模型将隧道围岩位移量分解成具有确定性的趋势项和具有不确定性的随机项。建立灰色–进化神经网络模型对趋势项和随机项进行预测,既结合GM(1,1)模型较好预测序列增长趋势的特点,又结合神经网络利用自适应实现网络总体误差最小的特点,进而解决了单一利用GM(1,1)模型时预测值的随机偏离量较大的问题,保证了预测的精度。将该模型应用于基于实测位移资料的堡镇隧道围岩水平收敛位移短期预测,较好地揭示了隧道围岩收敛位移演化的规律,为合理选取二次衬砌时机提供了参考。
展开更多
关键词
深埋隧道
围岩变形预测
灰色-进化神经网络模型
下载PDF
职称材料
题名
灰色-进化神经网络模型在深埋隧道围岩变形预测中的应用
被引量:
22
1
作者
吴益平
李亚伟
机构
中国地质大学工程学院
核工业北京地质研究院
出处
《岩土力学》
EI
CAS
CSCD
北大核心
2008年第S01期263-266,共4页
文摘
由于深埋隧道围岩的变形受到构造、应力场、地下水、开挖方式等复杂因素的综合影响,具有位移时间序列的单调增长的特殊性和非线性,运用响应成分模型将隧道围岩位移量分解成具有确定性的趋势项和具有不确定性的随机项。建立灰色–进化神经网络模型对趋势项和随机项进行预测,既结合GM(1,1)模型较好预测序列增长趋势的特点,又结合神经网络利用自适应实现网络总体误差最小的特点,进而解决了单一利用GM(1,1)模型时预测值的随机偏离量较大的问题,保证了预测的精度。将该模型应用于基于实测位移资料的堡镇隧道围岩水平收敛位移短期预测,较好地揭示了隧道围岩收敛位移演化的规律,为合理选取二次衬砌时机提供了参考。
关键词
深埋隧道
围岩变形预测
灰色-进化神经网络模型
Keywords
deep
buried
tunnel
prediction
of
wall
-
rock
deformation
Grey-ENN
model
分类号
U452.1 [建筑科学—桥梁与隧道工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
灰色-进化神经网络模型在深埋隧道围岩变形预测中的应用
吴益平
李亚伟
《岩土力学》
EI
CAS
CSCD
北大核心
2008
22
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部