Support vector machine (SVM) is powerful to solve some problems such as nonlinear classification, function estimation and density estimation. To consider the chaotic fh (frequency hopping)-code's characters in ch...Support vector machine (SVM) is powerful to solve some problems such as nonlinear classification, function estimation and density estimation. To consider the chaotic fh (frequency hopping)-code's characters in chaotic dynamic system, the forecasting model of the support vector machine in combination with Takens' delay coordinate phase reconstruction of chaotic times is established and the least squares model for large-scale problems is used in local training for this model. Finally, a fh-code series generated by Logistic-Kent mapping is applied to verify the local prediction model. Simulation results show that the high accuracy and fault tolerant SVM model has an excellent performance in predicting the fh code, with a very low mean square error and a high relative coefficient.展开更多
The purpose of software defect prediction is to identify defect-prone code modules to assist software quality assurance teams with the appropriate allocation of resources and labor.In previous software defect predicti...The purpose of software defect prediction is to identify defect-prone code modules to assist software quality assurance teams with the appropriate allocation of resources and labor.In previous software defect prediction studies,transfer learning was effective in solving the problem of inconsistent project data distribution.However,target projects often lack sufficient data,which affects the performance of the transfer learning model.In addition,the presence of uncorrelated features between projects can decrease the prediction accuracy of the transfer learning model.To address these problems,this article propose a software defect prediction method based on stable learning(SDP-SL)that combines code visualization techniques and residual networks.This method first transforms code files into code images using code visualization techniques and then constructs a defect prediction model based on these code images.During the model training process,target project data are not required as prior knowledge.Following the principles of stable learning,this paper dynamically adjusted the weights of source project samples to eliminate dependencies between features,thereby capturing the“invariance mechanism”within the data.This approach explores the genuine relationship between code defect features and labels,thereby enhancing defect prediction performance.To evaluate the performance of SDP-SL,this article conducted comparative experiments on 10 open-source projects in the PROMISE dataset.The experimental results demonstrated that in terms of the F-measure,the proposed SDP-SL method outperformed other within-project defect prediction methods by 2.11%-44.03%.In cross-project defect prediction,the SDP-SL method provided an improvement of 5.89%-25.46% in prediction performance compared to other cross-project defect prediction methods.Therefore,SDP-SL can effectively enhance within-and cross-project defect predictions.展开更多
As the popularity of open source projects,the volume of incoming pull requests is too large,which puts heavy burden on integrators who are responsible for accepting or rejecting pull requests.An accepted pull request ...As the popularity of open source projects,the volume of incoming pull requests is too large,which puts heavy burden on integrators who are responsible for accepting or rejecting pull requests.An accepted pull request prediction approach can help integrators by allowing them either to enforce an immediate rejection of code changes or allocate more resources to overcome the deficiency.In this paper,an approach CTCPPre is proposed to predict the accepted pull requests in GitHub.CTCPPre mainly considers code features of modified changes,text features of pull requests’description,contributor features of developers’previous behaviors,and project features of development environment.The effectiveness of CTCPPre on 28 projects containing 221096 pull requests is evaluated.Experimental results show that CTCPPre has good performances by achieving accuracy of 0.82,AUC of 0.76 and F1-score of 0.88 on average.It is compared with the state of art accepted pull request prediction approach RFPredict.On average across 28 projects,CTCPPre outperforms RFPredict by 6.64%,16.06%and 4.79%in terms of accuracy,AUC and F1-score,respectively.展开更多
基金the National Natural Science Foundation of China(10577007)Special Fund of Anti-InterferenceTechnology in Tactical Communication Defend Lab(51434020105ZS04).
文摘Support vector machine (SVM) is powerful to solve some problems such as nonlinear classification, function estimation and density estimation. To consider the chaotic fh (frequency hopping)-code's characters in chaotic dynamic system, the forecasting model of the support vector machine in combination with Takens' delay coordinate phase reconstruction of chaotic times is established and the least squares model for large-scale problems is used in local training for this model. Finally, a fh-code series generated by Logistic-Kent mapping is applied to verify the local prediction model. Simulation results show that the high accuracy and fault tolerant SVM model has an excellent performance in predicting the fh code, with a very low mean square error and a high relative coefficient.
基金supported by the NationalNatural Science Foundation of China(Grant No.61867004)the Youth Fund of the National Natural Science Foundation of China(Grant No.41801288).
文摘The purpose of software defect prediction is to identify defect-prone code modules to assist software quality assurance teams with the appropriate allocation of resources and labor.In previous software defect prediction studies,transfer learning was effective in solving the problem of inconsistent project data distribution.However,target projects often lack sufficient data,which affects the performance of the transfer learning model.In addition,the presence of uncorrelated features between projects can decrease the prediction accuracy of the transfer learning model.To address these problems,this article propose a software defect prediction method based on stable learning(SDP-SL)that combines code visualization techniques and residual networks.This method first transforms code files into code images using code visualization techniques and then constructs a defect prediction model based on these code images.During the model training process,target project data are not required as prior knowledge.Following the principles of stable learning,this paper dynamically adjusted the weights of source project samples to eliminate dependencies between features,thereby capturing the“invariance mechanism”within the data.This approach explores the genuine relationship between code defect features and labels,thereby enhancing defect prediction performance.To evaluate the performance of SDP-SL,this article conducted comparative experiments on 10 open-source projects in the PROMISE dataset.The experimental results demonstrated that in terms of the F-measure,the proposed SDP-SL method outperformed other within-project defect prediction methods by 2.11%-44.03%.In cross-project defect prediction,the SDP-SL method provided an improvement of 5.89%-25.46% in prediction performance compared to other cross-project defect prediction methods.Therefore,SDP-SL can effectively enhance within-and cross-project defect predictions.
基金Project(2018YFB1004202)supported by the National Key Research and Development Program of ChinaProject(61732019)supported by the National Natural Science Foundation of ChinaProject(SKLSDE-2018ZX-06)supported by the State Key Laboratory of Software Development Environment,China
文摘As the popularity of open source projects,the volume of incoming pull requests is too large,which puts heavy burden on integrators who are responsible for accepting or rejecting pull requests.An accepted pull request prediction approach can help integrators by allowing them either to enforce an immediate rejection of code changes or allocate more resources to overcome the deficiency.In this paper,an approach CTCPPre is proposed to predict the accepted pull requests in GitHub.CTCPPre mainly considers code features of modified changes,text features of pull requests’description,contributor features of developers’previous behaviors,and project features of development environment.The effectiveness of CTCPPre on 28 projects containing 221096 pull requests is evaluated.Experimental results show that CTCPPre has good performances by achieving accuracy of 0.82,AUC of 0.76 and F1-score of 0.88 on average.It is compared with the state of art accepted pull request prediction approach RFPredict.On average across 28 projects,CTCPPre outperforms RFPredict by 6.64%,16.06%and 4.79%in terms of accuracy,AUC and F1-score,respectively.