Rotating machinery is important to industrial production. Any failure of rotating machinery, especially the failure of rolling bearings, can lead to equipment shutdown and even more serious incidents. Therefore, accur...Rotating machinery is important to industrial production. Any failure of rotating machinery, especially the failure of rolling bearings, can lead to equipment shutdown and even more serious incidents. Therefore, accurate residual life prediction plays a crucial role in guaranteeing machine operation safety and reliability and reducing maintenance cost. In order to increase the forecasting precision of the remaining useful life(RUL) of the rolling bearing, an advanced approach combining elastic net with long short-time memory network(LSTM) is proposed, and the new approach is referred to as E-LSTM. The E-LSTM algorithm consists of an elastic mesh and LSTM, taking temporal-spatial correlation into consideration to forecast the RUL through the LSTM. To solve the over-fitting problem of the LSTM neural network during the training process, the elastic net based regularization term is introduced to the LSTM structure.In this way, the change of the output can be well characterized to express the bearing degradation mode. Experimental results from the real-world data demonstrate that the proposed E-LSTM method can obtain higher stability and relevant values that are useful for the RUL forecasting of bearing. Furthermore, these results also indicate that E-LSTM can achieve better performance.展开更多
针对滚动轴承的剩余寿命预测问题,提出一种基于多传感器信号融合的深度长短期记忆网络预测模型。利用深度学习和长短期记忆网络组合来构造深度长短期记忆网络;将多个传感器信号数据进行融合处理,从而通过深度学习结构能够发现传感器时...针对滚动轴承的剩余寿命预测问题,提出一种基于多传感器信号融合的深度长短期记忆网络预测模型。利用深度学习和长短期记忆网络组合来构造深度长短期记忆网络;将多个传感器信号数据进行融合处理,从而通过深度学习结构能够发现传感器时序信号中隐藏的长期依赖关系;通过网格搜索策略、自适应矩估计算法(Adaptive Moment Estimation Algorithm,AMEA)优化深度长短期记忆网络的网络结构和参数,并且引入一种主动丢弃法以缓解过度拟合问题。实验结果表明该方法具有更高的预测准确性和稳定性。展开更多
基金by National Natural Science Foundation of China(No.61972443)National Key Research and Development Plan Program of China(No.2019YFE0105300)+1 种基金Hunan Provincial Hu-Xiang Young Talents Project of China(No.2018RS3095)Hunan Provincial Natural Science Foundation of China(No.2020JJ5199).
文摘Rotating machinery is important to industrial production. Any failure of rotating machinery, especially the failure of rolling bearings, can lead to equipment shutdown and even more serious incidents. Therefore, accurate residual life prediction plays a crucial role in guaranteeing machine operation safety and reliability and reducing maintenance cost. In order to increase the forecasting precision of the remaining useful life(RUL) of the rolling bearing, an advanced approach combining elastic net with long short-time memory network(LSTM) is proposed, and the new approach is referred to as E-LSTM. The E-LSTM algorithm consists of an elastic mesh and LSTM, taking temporal-spatial correlation into consideration to forecast the RUL through the LSTM. To solve the over-fitting problem of the LSTM neural network during the training process, the elastic net based regularization term is introduced to the LSTM structure.In this way, the change of the output can be well characterized to express the bearing degradation mode. Experimental results from the real-world data demonstrate that the proposed E-LSTM method can obtain higher stability and relevant values that are useful for the RUL forecasting of bearing. Furthermore, these results also indicate that E-LSTM can achieve better performance.
文摘针对滚动轴承的剩余寿命预测问题,提出一种基于多传感器信号融合的深度长短期记忆网络预测模型。利用深度学习和长短期记忆网络组合来构造深度长短期记忆网络;将多个传感器信号数据进行融合处理,从而通过深度学习结构能够发现传感器时序信号中隐藏的长期依赖关系;通过网格搜索策略、自适应矩估计算法(Adaptive Moment Estimation Algorithm,AMEA)优化深度长短期记忆网络的网络结构和参数,并且引入一种主动丢弃法以缓解过度拟合问题。实验结果表明该方法具有更高的预测准确性和稳定性。