期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于KPCA-CMGANN算法的瓦斯涌出量预测研究 被引量:23
1
作者 肖鹏 谢行俊 +3 位作者 双海清 刘朝阳 王海宁 徐经苍 《中国安全科学学报》 CAS CSCD 北大核心 2020年第5期39-47,共9页
为了精准预测瓦斯涌出量,针对绝对瓦斯涌出量非线性、时变性、复杂性等特点,提出采用核主成分分析法(KPCA)对影响因素进行降维处理;针对BP神经网络(BPNN)中存在的收敛速度慢和易陷入局部最优解的问题,采用压缩映射遗传算法(CMGA)优化BP... 为了精准预测瓦斯涌出量,针对绝对瓦斯涌出量非线性、时变性、复杂性等特点,提出采用核主成分分析法(KPCA)对影响因素进行降维处理;针对BP神经网络(BPNN)中存在的收敛速度慢和易陷入局部最优解的问题,采用压缩映射遗传算法(CMGA)优化BPNN;构建CMGA与BPNN的耦合算法(CMGANN),计算分析某低瓦斯矿井监测历史数据形成的样本集,建立KPCA-CMGANN预测模型;用KPCA-CMGANN预测模型和其他3种网络模型分别对煤矿现场数据进行预测。结果表明:KPCA-CMGANN预测模型在379个时间步长里达到收敛,4个回采工作面的瓦斯涌出量预测相对误差分别为0.58%、0.63%、0.57%和0.45%,平均相对误差仅为0.56%,预测精度和收敛速度均优于对比模型,可实现瓦斯涌出量的快速精准预测。 展开更多
关键词 瓦斯涌出量预测 核主成分分析法(KPCA) 压缩映射遗传算法(CMGA) BP神经网络(BPNN) 样本集
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部