Predictive Emission Monitoring Systems (PEMS) offer a cost-effective and environmentally friendly alternative to Continuous Emission Monitoring Systems (CEMS) for monitoring pollution from industrial sources. Multiple...Predictive Emission Monitoring Systems (PEMS) offer a cost-effective and environmentally friendly alternative to Continuous Emission Monitoring Systems (CEMS) for monitoring pollution from industrial sources. Multiple regression is one of the fundamental statistical techniques to describe the relationship between dependent and independent variables. This model can be effectively used to develop a PEMS, to estimate the amount of pollution emitted by industrial sources, where the fuel composition and other process-related parameters are available. It often makes them sufficient to predict the emission discharge with acceptable accuracy. In cases where PEMS are accepted as an alternative method to CEMS, which use gas analyzers, they can provide cost savings and substantial benefits for ongoing system support and maintenance. The described mathematical concept is based on the matrix algebra representation in multiple regression involving multiple precision arithmetic techniques. Challenging numerical examples for statistical big data analysis, are investigated. Numerical examples illustrate computational accuracy and efficiency of statistical analysis due to increasing the precision level. The programming language C++ is used for mathematical model implementation. The data for research and development, including the dependent fuel and independent NOx emissions data, were obtained from CEMS software installed on a petrochemical plant.展开更多
This paper examines the significance of innovative replanting strategies in maximizing oil palm yield while ensuring sustainable productivity.Through a comprehensive review of literature and analysis of current practi...This paper examines the significance of innovative replanting strategies in maximizing oil palm yield while ensuring sustainable productivity.Through a comprehensive review of literature and analysis of current practices,the major findings of this research highlighted the importance of advanced breeding and clonal selection in developing high-yielding and disease-resistant oil palm varieties.Precision agriculture technologies,including IoT devices,drones,and sensors,were identified as critical tools for data-driven decision making,optimizing resource efficiency,and reducing environmental impact.Sustainable land use planning and agroforestry integration emerged as key strategies to balance productivity with environmental conservation.The broader impacts of this work extend to other agricultural sectors and land use planning,offering valuable insights for policymakers and stakeholders to promote responsible and resilient agricultural practices.By embracing innovative replanting strategies,the oil palm industry can contribute to a more sustainable and prosperous future,balancing economic growth with environmental stewardship.Continued research and collaboration are essential to achieve these goals and foster a harmonious coexistence between productivity and sustainability,integrating precision agriculture technologies for resource optimization and reduced environmental impact,promoting sustainable land use planning and agroforestry integration to enhance biodiversity and ecosystem services.Strengthening collaborations between governments,industry players,and research institutions for innovation and knowledge exchange is essential.展开更多
Inflammatory bowel disease(IBD)is a complex disease with variability in genetic,environmental,and lifestyle factors affecting disease presentation and course.Precision medicine has the potential to play a crucial role...Inflammatory bowel disease(IBD)is a complex disease with variability in genetic,environmental,and lifestyle factors affecting disease presentation and course.Precision medicine has the potential to play a crucial role in managing IBD by tailoring treatment plans based on the heterogeneity of clinical and temporal variability of patients.Precision medicine is a population-based approach to managing IBD by integrating environmental,genomic,epigenomic,transcriptomic,proteomic,and metabolomic factors.It is a recent and rapidly developing medicine.The widespread adoption of precision medicine worldwide has the potential to result in the early detection of diseases,optimal utilization of healthcare resources,enhanced patient outcomes,and,ultimately,improved quality of life for individuals with IBD.Though precision medicine is promising in terms of better quality of patient care,inadequacies exist in the ongoing research.There is discordance in study conduct,and data collection,utilization,interpretation,and analysis.This review aims to describe the current literature on precision medicine,its multiomics approach,and future directions for its application in IBD.展开更多
文摘Predictive Emission Monitoring Systems (PEMS) offer a cost-effective and environmentally friendly alternative to Continuous Emission Monitoring Systems (CEMS) for monitoring pollution from industrial sources. Multiple regression is one of the fundamental statistical techniques to describe the relationship between dependent and independent variables. This model can be effectively used to develop a PEMS, to estimate the amount of pollution emitted by industrial sources, where the fuel composition and other process-related parameters are available. It often makes them sufficient to predict the emission discharge with acceptable accuracy. In cases where PEMS are accepted as an alternative method to CEMS, which use gas analyzers, they can provide cost savings and substantial benefits for ongoing system support and maintenance. The described mathematical concept is based on the matrix algebra representation in multiple regression involving multiple precision arithmetic techniques. Challenging numerical examples for statistical big data analysis, are investigated. Numerical examples illustrate computational accuracy and efficiency of statistical analysis due to increasing the precision level. The programming language C++ is used for mathematical model implementation. The data for research and development, including the dependent fuel and independent NOx emissions data, were obtained from CEMS software installed on a petrochemical plant.
基金support from the Universiti Putra Malaysia Fundamental Research Grant Scheme(FRGS 1/2020/WAB04/Vote no 5540305)D’Khairan Farm Sdn Bhd(Vote no 6300349).
文摘This paper examines the significance of innovative replanting strategies in maximizing oil palm yield while ensuring sustainable productivity.Through a comprehensive review of literature and analysis of current practices,the major findings of this research highlighted the importance of advanced breeding and clonal selection in developing high-yielding and disease-resistant oil palm varieties.Precision agriculture technologies,including IoT devices,drones,and sensors,were identified as critical tools for data-driven decision making,optimizing resource efficiency,and reducing environmental impact.Sustainable land use planning and agroforestry integration emerged as key strategies to balance productivity with environmental conservation.The broader impacts of this work extend to other agricultural sectors and land use planning,offering valuable insights for policymakers and stakeholders to promote responsible and resilient agricultural practices.By embracing innovative replanting strategies,the oil palm industry can contribute to a more sustainable and prosperous future,balancing economic growth with environmental stewardship.Continued research and collaboration are essential to achieve these goals and foster a harmonious coexistence between productivity and sustainability,integrating precision agriculture technologies for resource optimization and reduced environmental impact,promoting sustainable land use planning and agroforestry integration to enhance biodiversity and ecosystem services.Strengthening collaborations between governments,industry players,and research institutions for innovation and knowledge exchange is essential.
文摘Inflammatory bowel disease(IBD)is a complex disease with variability in genetic,environmental,and lifestyle factors affecting disease presentation and course.Precision medicine has the potential to play a crucial role in managing IBD by tailoring treatment plans based on the heterogeneity of clinical and temporal variability of patients.Precision medicine is a population-based approach to managing IBD by integrating environmental,genomic,epigenomic,transcriptomic,proteomic,and metabolomic factors.It is a recent and rapidly developing medicine.The widespread adoption of precision medicine worldwide has the potential to result in the early detection of diseases,optimal utilization of healthcare resources,enhanced patient outcomes,and,ultimately,improved quality of life for individuals with IBD.Though precision medicine is promising in terms of better quality of patient care,inadequacies exist in the ongoing research.There is discordance in study conduct,and data collection,utilization,interpretation,and analysis.This review aims to describe the current literature on precision medicine,its multiomics approach,and future directions for its application in IBD.