High-speed and precision positioning are fundamental requirements for high-acceleration low-load mechanisms in integrated circuit (IC) packaging equipment. In this paper, we derive the transient nonlinear dynamicres...High-speed and precision positioning are fundamental requirements for high-acceleration low-load mechanisms in integrated circuit (IC) packaging equipment. In this paper, we derive the transient nonlinear dynamicresponse equations of high-acceleration mechanisms, which reveal that stiffness, frequency, damping, and driving frequency are the primary factors. Therefore, we propose a new structural optimization and velocity-planning method for the precision positioning of a high-acceleration mechanism based on optimal spatial and temporal distribution of inertial energy. For structural optimization, we first reviewed the commonly flexible multibody dynamic optimization using equivalent static loads method (ESLM), and then we selected the modified ESLM for optimal spatial distribution of inertial energy; hence, not only the stiffness but also the inertia and frequency of the real modal shapes are considered. For velocity planning, we developed a new velocity-planning method based on nonlinear dynamic-response optimization with varying motion conditions. Our method was verified on a high-acceleration die bonder. The amplitude of residual vibration could be decreased by more than 20% via structural optimization and the positioning time could be reduced by more than 40% via asymmetric variable velocity planning. This method provides an effective theoretical support for the precision positioning of high-acceleration low-load mechanisms.展开更多
Using high-precision zircon U-Pb ID-TIMS geochronology,tuffs from the Chang 9 shale and the Chang 7 shale were dated.The tuff in the Chang 9 shale is 241.47±0.17 Ma,which falls between the top tuff age of 241.06&...Using high-precision zircon U-Pb ID-TIMS geochronology,tuffs from the Chang 9 shale and the Chang 7 shale were dated.The tuff in the Chang 9 shale is 241.47±0.17 Ma,which falls between the top tuff age of 241.06±0.12 Ma and the bottom tuff age of 241.558±0.093 Ma in the Chang 7 shale.These reveal that the Chang 9 and Chang 7 shales are contemporaneous,belonging to the Ladinian stage of the Middle Triassic.This insight expands the region of the main source rock of Chang 7 to the northeast and will inform the search for the deep Chang 9 shale petroleum system,increasing the scope for exploring the Chang 7 shale system in northern Shaanxi.The research results clarify the relationship between the two sets of shale in the Yanchang Formation and redefine the distribution range of the Chang 7 shale in the Ordos Basin.At the same time,it shows that there is a cross-layer problem in the stratigraphic division of the Yanchang Formation in different regions,the high-precision U-Pb dating technology providing a reference for the fine stratigraphic correlation of other continental basins in the world.展开更多
The block-diagonal least squares method, which theoretically has specific requirements for the observation data and the spatial distribution of its precision, plays an important role in ultra-high degree gravity field...The block-diagonal least squares method, which theoretically has specific requirements for the observation data and the spatial distribution of its precision, plays an important role in ultra-high degree gravity field determination. On the basis of block-diagonal least squares method, three data processing strategies are employed to determine the gravity field models using three kinds of simulated global grid data with different noise spatial distri- bution in this paper. The numerical results show that when we employed the weight matrix corresponding to the noise of the observation data, the model computed by the least squares using the full normal matrix has much higher precision than the one estimated only using the block part of the normal matrix. The model computed by the block-diagonal least squares method without the weight matrix has slightly lower precision than the model computed using the rigorous least squares with the weight matrix. The result offers valuable reference to the using of block-diagonal least squares method in ultra-high gravity model determination.展开更多
基金supported by the National Key Basic Research Program of China (2011CB013104)National Natural Science Foundation of China (U1134004)+2 种基金Guangdong Provincial Natural Science Foundation (2015A030312008)Science and Technology Program of Guangzhou (201510010281)Guangdong Provincial Science and Technology Plan (2013B010402014)
文摘High-speed and precision positioning are fundamental requirements for high-acceleration low-load mechanisms in integrated circuit (IC) packaging equipment. In this paper, we derive the transient nonlinear dynamicresponse equations of high-acceleration mechanisms, which reveal that stiffness, frequency, damping, and driving frequency are the primary factors. Therefore, we propose a new structural optimization and velocity-planning method for the precision positioning of a high-acceleration mechanism based on optimal spatial and temporal distribution of inertial energy. For structural optimization, we first reviewed the commonly flexible multibody dynamic optimization using equivalent static loads method (ESLM), and then we selected the modified ESLM for optimal spatial distribution of inertial energy; hence, not only the stiffness but also the inertia and frequency of the real modal shapes are considered. For velocity planning, we developed a new velocity-planning method based on nonlinear dynamic-response optimization with varying motion conditions. Our method was verified on a high-acceleration die bonder. The amplitude of residual vibration could be decreased by more than 20% via structural optimization and the positioning time could be reduced by more than 40% via asymmetric variable velocity planning. This method provides an effective theoretical support for the precision positioning of high-acceleration low-load mechanisms.
基金supported by the Research Program of the Research Institute of Petroleum Exploration and Development of the Changqing Oilfield(Grant No.J2019168)。
文摘Using high-precision zircon U-Pb ID-TIMS geochronology,tuffs from the Chang 9 shale and the Chang 7 shale were dated.The tuff in the Chang 9 shale is 241.47±0.17 Ma,which falls between the top tuff age of 241.06±0.12 Ma and the bottom tuff age of 241.558±0.093 Ma in the Chang 7 shale.These reveal that the Chang 9 and Chang 7 shales are contemporaneous,belonging to the Ladinian stage of the Middle Triassic.This insight expands the region of the main source rock of Chang 7 to the northeast and will inform the search for the deep Chang 9 shale petroleum system,increasing the scope for exploring the Chang 7 shale system in northern Shaanxi.The research results clarify the relationship between the two sets of shale in the Yanchang Formation and redefine the distribution range of the Chang 7 shale in the Ordos Basin.At the same time,it shows that there is a cross-layer problem in the stratigraphic division of the Yanchang Formation in different regions,the high-precision U-Pb dating technology providing a reference for the fine stratigraphic correlation of other continental basins in the world.
基金supported by the National Natural Science Foundation of China for Distinguished Young Scholars (41404028)
文摘The block-diagonal least squares method, which theoretically has specific requirements for the observation data and the spatial distribution of its precision, plays an important role in ultra-high degree gravity field determination. On the basis of block-diagonal least squares method, three data processing strategies are employed to determine the gravity field models using three kinds of simulated global grid data with different noise spatial distri- bution in this paper. The numerical results show that when we employed the weight matrix corresponding to the noise of the observation data, the model computed by the least squares using the full normal matrix has much higher precision than the one estimated only using the block part of the normal matrix. The model computed by the block-diagonal least squares method without the weight matrix has slightly lower precision than the model computed using the rigorous least squares with the weight matrix. The result offers valuable reference to the using of block-diagonal least squares method in ultra-high gravity model determination.