本文报道1例应用分置式可测量种植导板引导的即刻种植即刻修复技术,修复牙外伤所致的12-22牙缺失。术前根据咬合记录,在exoCAD软件中设计上部目标修复体空间轮廓位置,再通过口内和锥形束CT图像实测获得12-22牙位点近远中向、唇腭向和龈...本文报道1例应用分置式可测量种植导板引导的即刻种植即刻修复技术,修复牙外伤所致的12-22牙缺失。术前根据咬合记录,在exoCAD软件中设计上部目标修复体空间轮廓位置,再通过口内和锥形束CT图像实测获得12-22牙位点近远中向、唇腭向和龈向分别在软硬组织水平的空间数据,在Bluesky Plan 4软件中设计比选4个正确种植位点,确认后设计并通过三维打印制作基于三向位置数值的可测量种植导板。术中使用3组可测量种植导板结合测量尺实测依次完成定点、半钻预备及轴向核查、全程预备及三向位置核查和种植体植入,之后再次实测核查种植位点。术后通过转移导板即刻戴入基于目标修复体空间和原天然牙穿龈形态设计、并于术前切削完成的临时修复体。经术后对比测量,种植入口点平均线性偏差为(0.57±0.17) mm,种植止点平均线性偏差为(0.82±0.27) mm,各植体平均角度偏差为(1.86±0.89)°,实现了12-22牙位点种植体的精准植入与同期的即刻修复。展开更多
By using the precise integration method, the numerical solution of linear quadratic Gaussian (LQG) optimal control problem was discussed. Based on the separation principle, the LQG central problem decomposes, or separ...By using the precise integration method, the numerical solution of linear quadratic Gaussian (LQG) optimal control problem was discussed. Based on the separation principle, the LQG central problem decomposes, or separates, into an optimal state-feedback control problem and an optimal state estimation problem. That is the off-line solution of two sets of Riccati differential equations and the on-line integration solution of the state vector from a set of time-variant differential equations. The present algorithms are not only appropriate to solve the two-point boundary-value problem and the corresponding Riccati differential equation, but also can be used to solve the estimated state from the time-variant differential equations. The high precision of precise integration is of advantage for the control and estimation. Numerical examples demonstrate the high precision and effectiveness of the algorithm.展开更多
文摘本文报道1例应用分置式可测量种植导板引导的即刻种植即刻修复技术,修复牙外伤所致的12-22牙缺失。术前根据咬合记录,在exoCAD软件中设计上部目标修复体空间轮廓位置,再通过口内和锥形束CT图像实测获得12-22牙位点近远中向、唇腭向和龈向分别在软硬组织水平的空间数据,在Bluesky Plan 4软件中设计比选4个正确种植位点,确认后设计并通过三维打印制作基于三向位置数值的可测量种植导板。术中使用3组可测量种植导板结合测量尺实测依次完成定点、半钻预备及轴向核查、全程预备及三向位置核查和种植体植入,之后再次实测核查种植位点。术后通过转移导板即刻戴入基于目标修复体空间和原天然牙穿龈形态设计、并于术前切削完成的临时修复体。经术后对比测量,种植入口点平均线性偏差为(0.57±0.17) mm,种植止点平均线性偏差为(0.82±0.27) mm,各植体平均角度偏差为(1.86±0.89)°,实现了12-22牙位点种植体的精准植入与同期的即刻修复。
文摘By using the precise integration method, the numerical solution of linear quadratic Gaussian (LQG) optimal control problem was discussed. Based on the separation principle, the LQG central problem decomposes, or separates, into an optimal state-feedback control problem and an optimal state estimation problem. That is the off-line solution of two sets of Riccati differential equations and the on-line integration solution of the state vector from a set of time-variant differential equations. The present algorithms are not only appropriate to solve the two-point boundary-value problem and the corresponding Riccati differential equation, but also can be used to solve the estimated state from the time-variant differential equations. The high precision of precise integration is of advantage for the control and estimation. Numerical examples demonstrate the high precision and effectiveness of the algorithm.