Temporal and spatial response characteristics of vegetation NDVI to the variation of temperature and precipitation in the whole year, spring, summer and autumn was analyzed from April 1998 to March 2008 based on the S...Temporal and spatial response characteristics of vegetation NDVI to the variation of temperature and precipitation in the whole year, spring, summer and autumn was analyzed from April 1998 to March 2008 based on the SPOT VGT-NDVI data and daily temperature and precipitation data from 205 meteorological stations in eastern China. The results indicate that as a whole, the response of vegetation NDVI to the variation of temperature is more pronounced than that of precipitation in eastern China. Vegetation NDVI maximally responds to the variation of temperature with a lag of about 10 days, and it maximally responds to the variation of precipitation with a lag of about 30 days. The response of vegetation NDVI to temperature and precipitation is most pronounced in autumn, and has the longest lag in summer. Spatially, the maximum response of vegetation NDVI to the variation of temperature is more pronounced in the northern and middle parts than in the southern part of eastern China. The maximum response of vegetation NDVI to the variation of precipitation is more pronounced in the northern part than in the middle and southern parts of eastern China. The response of vegetation NDVI to the variation of temperature has longer lag in the northern and southern parts than in the middle part of eastern China. The response of vegetation NDVl to the variation of precipitation has the longest lag in the southern part, and the shortest lag in the northern part of eastern China. The response of vegetation NDVI to the variation of temperature and precipitation in eastern China is mainly consistent with other results, but the lag time of vegetation NDVI to the variation of temperature and precipitation has some differences with those results of the monsoon region of eastern China.展开更多
This study analyses the decadal changes in winter precipitation and extreme precipitation in a warming environment in China. The results show that, together with a trend of winter warming in China, winter precipitatio...This study analyses the decadal changes in winter precipitation and extreme precipitation in a warming environment in China. The results show that, together with a trend of winter warming in China, winter precipitation and extreme precipitation in the region are also increasing. In addition, concurrent with the decadal warming shift that occurred in the mid-1980s, precipitation and extreme precipitation both increased significantly. Quantitative analysis shows that precipitation and extreme precipitation increased at rates of 9.7% and 22.6% per 1℃ of surface warming in China. This rate of precipitation increase is greater than the global mean, which indicates that precipitation in China is highly sensitive to climate warming and further highlights the importance of studying regional responses to climate warming. The fact that extreme precipitation is increasing at a higher rate than precipitation implies that winter precipitation in China will increasingly be of more extreme type in the context of global warming, which could partly explain why there have recently been a number of record-breaking extreme snowfall events in China.展开更多
基金National Natural Science Foundation of China, No.40901031 Shanghai Natural Science Foundation, No.09ZR1428800+3 种基金 National Key Project of Scientific and Technical Supporting Programs, No.2007BAC29B05 Special Project of Research-style Operation in Shanghai Meteorological Bureau, No.YJ200803 No.YJ200805 National 863 Program, No.2006AA12Z104
文摘Temporal and spatial response characteristics of vegetation NDVI to the variation of temperature and precipitation in the whole year, spring, summer and autumn was analyzed from April 1998 to March 2008 based on the SPOT VGT-NDVI data and daily temperature and precipitation data from 205 meteorological stations in eastern China. The results indicate that as a whole, the response of vegetation NDVI to the variation of temperature is more pronounced than that of precipitation in eastern China. Vegetation NDVI maximally responds to the variation of temperature with a lag of about 10 days, and it maximally responds to the variation of precipitation with a lag of about 30 days. The response of vegetation NDVI to temperature and precipitation is most pronounced in autumn, and has the longest lag in summer. Spatially, the maximum response of vegetation NDVI to the variation of temperature is more pronounced in the northern and middle parts than in the southern part of eastern China. The maximum response of vegetation NDVI to the variation of precipitation is more pronounced in the northern part than in the middle and southern parts of eastern China. The response of vegetation NDVI to the variation of temperature has longer lag in the northern and southern parts than in the middle part of eastern China. The response of vegetation NDVl to the variation of precipitation has the longest lag in the southern part, and the shortest lag in the northern part of eastern China. The response of vegetation NDVI to the variation of temperature and precipitation in eastern China is mainly consistent with other results, but the lag time of vegetation NDVI to the variation of temperature and precipitation has some differences with those results of the monsoon region of eastern China.
基金supported by the Strategic Priority Research Program-Climate Change: Carbon Budget and Relevant Issues of the Chinese Academy of Sciences (XDA05090306)the National Basic Research Program of China (2012CB955401)
文摘This study analyses the decadal changes in winter precipitation and extreme precipitation in a warming environment in China. The results show that, together with a trend of winter warming in China, winter precipitation and extreme precipitation in the region are also increasing. In addition, concurrent with the decadal warming shift that occurred in the mid-1980s, precipitation and extreme precipitation both increased significantly. Quantitative analysis shows that precipitation and extreme precipitation increased at rates of 9.7% and 22.6% per 1℃ of surface warming in China. This rate of precipitation increase is greater than the global mean, which indicates that precipitation in China is highly sensitive to climate warming and further highlights the importance of studying regional responses to climate warming. The fact that extreme precipitation is increasing at a higher rate than precipitation implies that winter precipitation in China will increasingly be of more extreme type in the context of global warming, which could partly explain why there have recently been a number of record-breaking extreme snowfall events in China.