China Meteorological Administration(CMA) recently released its 40-yr(1979–2018) global Chinese reanalysis(CRA-40) dataset. To assess performance of the CRA-40 data in quantifying the regional water cycle, contributio...China Meteorological Administration(CMA) recently released its 40-yr(1979–2018) global Chinese reanalysis(CRA-40) dataset. To assess performance of the CRA-40 data in quantifying the regional water cycle, contributions of local and remote atmospheric moisture fluxes to precipitation in East China derived from CRA-40 are compared with those derived from the ECMWF reanalysis version 5(ERA-5). Observed precipitation and evaporation data are also used for validation. As for mean precipitation, CRA-40 matches the observation better in winter and spring than in summer, with a larger wet bias(1.41 mm day^(-1)) in summer than that in ERA-5(0.97 mm day^(-1)), particularly over South China. The conservation of atmospheric water vapor over East China measured by CRA-40 is comparable to that of ERA-5. Both reanalyses show a dominant role of the remote moisture transport in the East China precipitation.In comparison, the annual precipitation induced by the moisture influx from the west of the study domain in CRA-40 is 80 mm less than that in ERA-5. The recycling ratio of annual mean precipitation in CRA-40 is approximately21.1%, slightly larger than that in ERA-5(20.1%). The maximum difference of each hydrological component between the two datasets appears in the summer horizontal moisture influx(3.57 ×10^(7) kg s^(-1);ERA-5 is larger) and winter runoff(1.84 ×10^(7) kg s^(-1);CRA-40 is larger). CRA-40 shows better performance than ERA-5 in capturing the interannual variability of precipitation over East China, as evinced by a higher correlation coefficient with the observation(0.77 versus 0.33). The trend of summer precipitation since 2011 is better reproduced in CRA-40. Both reanalyses show prominent contribution of the southern moisture influx to the interannual variation of precipitation. This study demonstrates the reliability of CRA-40 in representing the hydrological cycle over East China and provides a useful reference for future application of CRA-40 in water cycle studies.展开更多
内循环降水率是本地蒸发产生的降水与总降水量的比值,可以表征陆气相互作用的强度。本研究使用准等熵拉格朗日后向轨迹追踪模型(Quasi-isentropic backward trajectory,QIBT),基于全球陆面数据同化产品(Global Land Data Assimilation S...内循环降水率是本地蒸发产生的降水与总降水量的比值,可以表征陆气相互作用的强度。本研究使用准等熵拉格朗日后向轨迹追踪模型(Quasi-isentropic backward trajectory,QIBT),基于全球陆面数据同化产品(Global Land Data Assimilation Systems,GLDAS)的降水和蒸发数据,以及ERA-Interim再分析资料(ERAI),选取降水量与气候平均态相当的2001年,研究了青藏高原内循环降水率。其次,使用2001年ERAI降水和蒸发数据替换GLDAS数据,分析地表数据不确定性对内循环降水率的影响,最后,选取30年降水和蒸发量的极端情况,探讨了极端干湿年对内循环降水率的影响。结果表明,青藏高原内循环降水率东南部小于西北部,年平均内循环降水率为0.42。极端干年大于2001年,极端湿年小于2001年。使用再分析资料的降水和蒸发数据后,内循环降水率减小为0.28,与再分析资料对青藏高原降水量的高估有关。展开更多
本文基于观测和再分析资料,采用Brubaker二元模型评估了第六次国际耦合模式比较计划(CMIP6)中19个模式对中国东部季风区气候态水循环过程的模拟能力,并分析了模拟误差来源。结果表明,CMIP6模式集合平均(MME)能够合理再现观测降水和蒸发...本文基于观测和再分析资料,采用Brubaker二元模型评估了第六次国际耦合模式比较计划(CMIP6)中19个模式对中国东部季风区气候态水循环过程的模拟能力,并分析了模拟误差来源。结果表明,CMIP6模式集合平均(MME)能够合理再现观测降水和蒸发的年平均气候态空间分布及年循环特征,与观测值的空间相关系数分别为0.92和0.87。较之观测,MME高估了华北地区降水(0.55 mm d^(−1)),低估了华南沿海地区降水(−0.3 mm d^(−1))。所有CMIP6模式均高估蒸发强度(偏差0.03~0.98 mm d^(−1)),使得模拟的降水与蒸发之差偏少。模式整体能够模拟出我国东部季风区降水再循环率及不同边界水汽来源的贡献率,但低估了由南边界进入季风区的水汽贡献,导致东亚季风区偏干。通过分析模式对影响水汽通量的两个气象要素(风速和大气比湿)的模拟能力,发现研究区南边界的风速大小决定了模式间水汽输送差异。南边界风速越大的模式,由南边界进入的水汽通量越大,模式模拟的降水越多。西北太平洋辐合带的东西位置是影响南边界南风速的重要系统之一,辐合带位置偏东的模式模拟的南风强度较弱,使得水汽输送偏弱、降水偏少;反之,南边界水汽输送偏强、降水偏多。本文通过评估最新一代CMIP6模式在东亚水循环方面的模拟性能,指出了当前气候模式在模拟西太平洋辐合带位置方面存在的偏差及其对东亚水循环的影响。展开更多
This is an investigation of exchanges of energy and water between the atmosphere and the vegetated continents,and the impact of and mechanisms for land surface-atmosphere interactions on hydrological cycle and general...This is an investigation of exchanges of energy and water between the atmosphere and the vegetated continents,and the impact of and mechanisms for land surface-atmosphere interactions on hydrological cycle and general circulation by implementing the Simplified Simple Biosphere (SSiB)model in a modified version of IAP/LASG global spectral general model(L9R15 AGCM). This study reveals that the SSiB model produces a better partitioning of the land surface heat and moisture fluxes and its diurnal variations,and also gives the transport of energy and water among atmosphere,vegetation and soil explicitly and realistically.Thus the coupled SSiB-AGCM runs lead to the more conspicuous improvement in the simulated circulation,precipitation,mean water vapor content and its transport.particularly in the Asian monsoon region in the real world than CTL-AGCM runs.It is also pointed out that both the implementation of land surface parameterizations and the variations in land surface into the GOALS model have greatly improved hydrological balance over continents and have a significant impact on the simulated climate. particularly over the massive continents. Improved precipitation recycling model was employed to verify the mechanisms for land surface hydrology parameterizations on hydrological cycle and precipitation climatology in AGCM. It can be argued that the recycling precipitation rate is significantly reduced,particularly in the arid and semi-arid region of the boreal summer hemisphere,coincident with remarkable reduction in evapotranspiration over the continental area.Therefore the coupled SSiB-AGCM runs reduce the bias of too much precipitation over land surface in most AGCMs,thereby bringing the simulated precipitation closer to observations in many continental regions of the world than CTL-AGCM runs.展开更多
众多研究表明黄河源区受气候变化影响,土壤活动层逐渐下降。土壤温、湿度是陆面过程及地球系统中的重要物理量,它们通过影响地表能量和物质交换而影响大气环流和降水等。利用WRF(Weather Research and Forecasting)模式,选取2个典型年...众多研究表明黄河源区受气候变化影响,土壤活动层逐渐下降。土壤温、湿度是陆面过程及地球系统中的重要物理量,它们通过影响地表能量和物质交换而影响大气环流和降水等。利用WRF(Weather Research and Forecasting)模式,选取2个典型年分别设计了2个控制试验和2个敏感性试验来探讨土壤初始状况变化对区域水循环的影响,通过再循环降水率定量描述不同气候背景下陆面对黄河源区水循环的影响,并尝试从环流角度进一步分析土壤初始状况改变对源区水循环影响的物理机制。结果表明:陆面对水循环的影响受大尺度环流背景场影响较大,较弱的环流背景下再循环降水率较强环流背景大5%左右。土壤初始状况对水循环要素有一定程度的影响。土壤初始温度升高/降低,水汽通量增多/减少,后期降水增大/减小。不同环流背景下,土壤记忆时间不同,在弱的环流背景下,土壤记忆时间要长,初始状况扰动可持续1~2个月。展开更多
Moisture contribution and transport pathways for Central Asia(CA)are quantitatively examined using the Lagrangian water cycle model based on reanalysis and observational data to explain the precipitation seasonality a...Moisture contribution and transport pathways for Central Asia(CA)are quantitatively examined using the Lagrangian water cycle model based on reanalysis and observational data to explain the precipitation seasonality and the moisture transport variation during 1979-2015.Westerly-related(northwesterly and westerly)transport explains 42%of CA precipitation and dominates in southwest CA,where precipitation is greatest in the cold season.Southeast CA,including part of Northwest China,experiences its maximum precipitation in the warm season and is solely dominated by southerly transport,which explains about 48%of CA precipitation.The remaining 10%of CA precipitation is explained by northerly transport,which steadily impacts north CA and causes a maximum in precipitation in the warm season.Most CA areas are exposed to seasonally varying moisture transport,except for southeast and north CA,which are impacted by southerly and northerly transport year-round.In general,the midlatitude westerlies-driven transport and the Indian monsoon-driven southerly-related transport explain most of the spatial differences in precipitation seasonality over CA.Moreover,the contribution ratio of local evaporation in CA to precipitation exhibits significant interdecadal variability and a meridionally oriented tripole of moisture transport anomalies.Since the early 2000s,CA has experienced a decade of anomalously low local moisture contribution,which seems jointly determined by the weakened moisture contribution from midlatitudes(the Atlantic,Europe,and CA itself)and the enhanced contribution from high latitudes(West Siberia and the Arctic)and tropical areas(South Asia and the Indian Ocean).展开更多
基金Supported by the National Natural Science Foundation of China (41675076)Program of International S&T Cooperation of Chinese Academy of Sciences (2018YFE0196000)Innovative Team Project of Lanzhou Institute of Arid Meteorology (GHSCXTD-2020-2)。
文摘China Meteorological Administration(CMA) recently released its 40-yr(1979–2018) global Chinese reanalysis(CRA-40) dataset. To assess performance of the CRA-40 data in quantifying the regional water cycle, contributions of local and remote atmospheric moisture fluxes to precipitation in East China derived from CRA-40 are compared with those derived from the ECMWF reanalysis version 5(ERA-5). Observed precipitation and evaporation data are also used for validation. As for mean precipitation, CRA-40 matches the observation better in winter and spring than in summer, with a larger wet bias(1.41 mm day^(-1)) in summer than that in ERA-5(0.97 mm day^(-1)), particularly over South China. The conservation of atmospheric water vapor over East China measured by CRA-40 is comparable to that of ERA-5. Both reanalyses show a dominant role of the remote moisture transport in the East China precipitation.In comparison, the annual precipitation induced by the moisture influx from the west of the study domain in CRA-40 is 80 mm less than that in ERA-5. The recycling ratio of annual mean precipitation in CRA-40 is approximately21.1%, slightly larger than that in ERA-5(20.1%). The maximum difference of each hydrological component between the two datasets appears in the summer horizontal moisture influx(3.57 ×10^(7) kg s^(-1);ERA-5 is larger) and winter runoff(1.84 ×10^(7) kg s^(-1);CRA-40 is larger). CRA-40 shows better performance than ERA-5 in capturing the interannual variability of precipitation over East China, as evinced by a higher correlation coefficient with the observation(0.77 versus 0.33). The trend of summer precipitation since 2011 is better reproduced in CRA-40. Both reanalyses show prominent contribution of the southern moisture influx to the interannual variation of precipitation. This study demonstrates the reliability of CRA-40 in representing the hydrological cycle over East China and provides a useful reference for future application of CRA-40 in water cycle studies.
文摘内循环降水率是本地蒸发产生的降水与总降水量的比值,可以表征陆气相互作用的强度。本研究使用准等熵拉格朗日后向轨迹追踪模型(Quasi-isentropic backward trajectory,QIBT),基于全球陆面数据同化产品(Global Land Data Assimilation Systems,GLDAS)的降水和蒸发数据,以及ERA-Interim再分析资料(ERAI),选取降水量与气候平均态相当的2001年,研究了青藏高原内循环降水率。其次,使用2001年ERAI降水和蒸发数据替换GLDAS数据,分析地表数据不确定性对内循环降水率的影响,最后,选取30年降水和蒸发量的极端情况,探讨了极端干湿年对内循环降水率的影响。结果表明,青藏高原内循环降水率东南部小于西北部,年平均内循环降水率为0.42。极端干年大于2001年,极端湿年小于2001年。使用再分析资料的降水和蒸发数据后,内循环降水率减小为0.28,与再分析资料对青藏高原降水量的高估有关。
文摘本文基于观测和再分析资料,采用Brubaker二元模型评估了第六次国际耦合模式比较计划(CMIP6)中19个模式对中国东部季风区气候态水循环过程的模拟能力,并分析了模拟误差来源。结果表明,CMIP6模式集合平均(MME)能够合理再现观测降水和蒸发的年平均气候态空间分布及年循环特征,与观测值的空间相关系数分别为0.92和0.87。较之观测,MME高估了华北地区降水(0.55 mm d^(−1)),低估了华南沿海地区降水(−0.3 mm d^(−1))。所有CMIP6模式均高估蒸发强度(偏差0.03~0.98 mm d^(−1)),使得模拟的降水与蒸发之差偏少。模式整体能够模拟出我国东部季风区降水再循环率及不同边界水汽来源的贡献率,但低估了由南边界进入季风区的水汽贡献,导致东亚季风区偏干。通过分析模式对影响水汽通量的两个气象要素(风速和大气比湿)的模拟能力,发现研究区南边界的风速大小决定了模式间水汽输送差异。南边界风速越大的模式,由南边界进入的水汽通量越大,模式模拟的降水越多。西北太平洋辐合带的东西位置是影响南边界南风速的重要系统之一,辐合带位置偏东的模式模拟的南风强度较弱,使得水汽输送偏弱、降水偏少;反之,南边界水汽输送偏强、降水偏多。本文通过评估最新一代CMIP6模式在东亚水循环方面的模拟性能,指出了当前气候模式在模拟西太平洋辐合带位置方面存在的偏差及其对东亚水循环的影响。
基金Project jointly supported by the Key Project of National Basic Research"Research on the Formation Mechanism Prediction Theory of Severe ClimaticSynoptic Disasters in China"through"973"grant No.G1998040911,G1998040900 and by the National Natu
文摘This is an investigation of exchanges of energy and water between the atmosphere and the vegetated continents,and the impact of and mechanisms for land surface-atmosphere interactions on hydrological cycle and general circulation by implementing the Simplified Simple Biosphere (SSiB)model in a modified version of IAP/LASG global spectral general model(L9R15 AGCM). This study reveals that the SSiB model produces a better partitioning of the land surface heat and moisture fluxes and its diurnal variations,and also gives the transport of energy and water among atmosphere,vegetation and soil explicitly and realistically.Thus the coupled SSiB-AGCM runs lead to the more conspicuous improvement in the simulated circulation,precipitation,mean water vapor content and its transport.particularly in the Asian monsoon region in the real world than CTL-AGCM runs.It is also pointed out that both the implementation of land surface parameterizations and the variations in land surface into the GOALS model have greatly improved hydrological balance over continents and have a significant impact on the simulated climate. particularly over the massive continents. Improved precipitation recycling model was employed to verify the mechanisms for land surface hydrology parameterizations on hydrological cycle and precipitation climatology in AGCM. It can be argued that the recycling precipitation rate is significantly reduced,particularly in the arid and semi-arid region of the boreal summer hemisphere,coincident with remarkable reduction in evapotranspiration over the continental area.Therefore the coupled SSiB-AGCM runs reduce the bias of too much precipitation over land surface in most AGCMs,thereby bringing the simulated precipitation closer to observations in many continental regions of the world than CTL-AGCM runs.
文摘众多研究表明黄河源区受气候变化影响,土壤活动层逐渐下降。土壤温、湿度是陆面过程及地球系统中的重要物理量,它们通过影响地表能量和物质交换而影响大气环流和降水等。利用WRF(Weather Research and Forecasting)模式,选取2个典型年分别设计了2个控制试验和2个敏感性试验来探讨土壤初始状况变化对区域水循环的影响,通过再循环降水率定量描述不同气候背景下陆面对黄河源区水循环的影响,并尝试从环流角度进一步分析土壤初始状况改变对源区水循环影响的物理机制。结果表明:陆面对水循环的影响受大尺度环流背景场影响较大,较弱的环流背景下再循环降水率较强环流背景大5%左右。土壤初始状况对水循环要素有一定程度的影响。土壤初始温度升高/降低,水汽通量增多/减少,后期降水增大/减小。不同环流背景下,土壤记忆时间不同,在弱的环流背景下,土壤记忆时间要长,初始状况扰动可持续1~2个月。
基金supported by the Strategic Priority Research Program of Chinese Academy of Sciences Sci-ences under Grant No.XDA20020201the National Natural Sci-ence Foundation of China(NSFC)under Grant Nos.41975099,U2006210,and 41475072.
文摘Moisture contribution and transport pathways for Central Asia(CA)are quantitatively examined using the Lagrangian water cycle model based on reanalysis and observational data to explain the precipitation seasonality and the moisture transport variation during 1979-2015.Westerly-related(northwesterly and westerly)transport explains 42%of CA precipitation and dominates in southwest CA,where precipitation is greatest in the cold season.Southeast CA,including part of Northwest China,experiences its maximum precipitation in the warm season and is solely dominated by southerly transport,which explains about 48%of CA precipitation.The remaining 10%of CA precipitation is explained by northerly transport,which steadily impacts north CA and causes a maximum in precipitation in the warm season.Most CA areas are exposed to seasonally varying moisture transport,except for southeast and north CA,which are impacted by southerly and northerly transport year-round.In general,the midlatitude westerlies-driven transport and the Indian monsoon-driven southerly-related transport explain most of the spatial differences in precipitation seasonality over CA.Moreover,the contribution ratio of local evaporation in CA to precipitation exhibits significant interdecadal variability and a meridionally oriented tripole of moisture transport anomalies.Since the early 2000s,CA has experienced a decade of anomalously low local moisture contribution,which seems jointly determined by the weakened moisture contribution from midlatitudes(the Atlantic,Europe,and CA itself)and the enhanced contribution from high latitudes(West Siberia and the Arctic)and tropical areas(South Asia and the Indian Ocean).