降水形态的变化可以影响地表的温度和反照率,对下垫面物质和能量平衡、陆地水文及生态系统均产生极大影响.基于美国阿拉斯加8站和加拿大11站日平均气温和固态、液态降水资料拟合的固-液态降水临界气温,辨析了1961~2010年环北极地区253...降水形态的变化可以影响地表的温度和反照率,对下垫面物质和能量平衡、陆地水文及生态系统均产生极大影响.基于美国阿拉斯加8站和加拿大11站日平均气温和固态、液态降水资料拟合的固-液态降水临界气温,辨析了1961~2010年环北极地区253个站点的降水形态时空变化特征.结果表明:60°N以北地区,降雨量占总降水量的比值(rainfall to total precipitation ratio,RPR)随纬度升高而减小.RPR气候平均态在夏季最高,秋季、春季次之,冬季最小.在不同季节,RPR变化趋势存在明显的区域差异.在春季,RPR变化趋势较为一致,在北极大部分地区(82.46%站点)呈增加趋势,且有22.37%站点通过显著性检验,表明北极大部分地区春季降水在过去50多年间呈现由固态向液态转变的趋势.使用95%置信区间上限和下限临界温度对降水形态进行划分和趋势分析,其结果与使用最优解的计算结果一致.在北极冰雪开始消融的春夏季节转换期(3~7月),阿拉斯加、中西伯利亚和北欧部分地区存在明显的固态降水向液态降水转变的趋势,这一趋势可能正在对北极地-气相互作用施加着影响.展开更多
The distribution of winter-spring snow cover over the Tibetan Plateau (TP) and its relationship with summer precipitation in the middle and lower reaches of Yangtze River Valley (MLYRV) during 2003-2013 have been ...The distribution of winter-spring snow cover over the Tibetan Plateau (TP) and its relationship with summer precipitation in the middle and lower reaches of Yangtze River Valley (MLYRV) during 2003-2013 have been investigated with the moderate-resolution imaging spectrometer (MODIS) Terra data (MOD10A2) and precipitation observations. Results show that snow cover percentage (SCP) remains approximately 20% in winter and spring then tails off to below 5% with warmer temperature and snow melt in summer. The lower and highest percentages present a declining tendency while the middle SCP exhibits an opposite variation. The maximum value appears from the middle of October to March and the minimum emerges from July to August. The annual and winter-spring SCPs present a decreasing tendency. Snow cover is mainly situated in the periphery of the plateau and mountainous regions, and less snow in the interior of the plateau, basin and valley areas in view of snow cover frequency (SCF) over the TP. Whatever annual or winter-spring snow cover, they all have remarkable declining tendency during 2003-2013, and annual snow cover presents a decreasing trend in the interior of the TP and increasing trend in the periphery of the TP. Hie multi-year averaged eight-day SCP is negatively related to mean precipitation in the MLYRV. Spring SCP is negatively related to summer precipitation while winter SCP is positively related to summer precipitation in most parts of the MLYRV. Hence, the influence of winter snow cover on precipitation is much more significant than that in spring on the basis of correlation analysis. The oscillation of SCF from southeast to northwest over the TP corresponds well to the beginning,development and cessation of the rain belt in eastern China.展开更多
文摘降水形态的变化可以影响地表的温度和反照率,对下垫面物质和能量平衡、陆地水文及生态系统均产生极大影响.基于美国阿拉斯加8站和加拿大11站日平均气温和固态、液态降水资料拟合的固-液态降水临界气温,辨析了1961~2010年环北极地区253个站点的降水形态时空变化特征.结果表明:60°N以北地区,降雨量占总降水量的比值(rainfall to total precipitation ratio,RPR)随纬度升高而减小.RPR气候平均态在夏季最高,秋季、春季次之,冬季最小.在不同季节,RPR变化趋势存在明显的区域差异.在春季,RPR变化趋势较为一致,在北极大部分地区(82.46%站点)呈增加趋势,且有22.37%站点通过显著性检验,表明北极大部分地区春季降水在过去50多年间呈现由固态向液态转变的趋势.使用95%置信区间上限和下限临界温度对降水形态进行划分和趋势分析,其结果与使用最优解的计算结果一致.在北极冰雪开始消融的春夏季节转换期(3~7月),阿拉斯加、中西伯利亚和北欧部分地区存在明显的固态降水向液态降水转变的趋势,这一趋势可能正在对北极地-气相互作用施加着影响.
基金supported by the National Natural Science Foundation of China(Grant No.41130960)the Project of the China Meteorological Administration(Grant Nos.CCSF201515 and CMAGJ2013M51)
文摘The distribution of winter-spring snow cover over the Tibetan Plateau (TP) and its relationship with summer precipitation in the middle and lower reaches of Yangtze River Valley (MLYRV) during 2003-2013 have been investigated with the moderate-resolution imaging spectrometer (MODIS) Terra data (MOD10A2) and precipitation observations. Results show that snow cover percentage (SCP) remains approximately 20% in winter and spring then tails off to below 5% with warmer temperature and snow melt in summer. The lower and highest percentages present a declining tendency while the middle SCP exhibits an opposite variation. The maximum value appears from the middle of October to March and the minimum emerges from July to August. The annual and winter-spring SCPs present a decreasing tendency. Snow cover is mainly situated in the periphery of the plateau and mountainous regions, and less snow in the interior of the plateau, basin and valley areas in view of snow cover frequency (SCF) over the TP. Whatever annual or winter-spring snow cover, they all have remarkable declining tendency during 2003-2013, and annual snow cover presents a decreasing trend in the interior of the TP and increasing trend in the periphery of the TP. Hie multi-year averaged eight-day SCP is negatively related to mean precipitation in the MLYRV. Spring SCP is negatively related to summer precipitation while winter SCP is positively related to summer precipitation in most parts of the MLYRV. Hence, the influence of winter snow cover on precipitation is much more significant than that in spring on the basis of correlation analysis. The oscillation of SCF from southeast to northwest over the TP corresponds well to the beginning,development and cessation of the rain belt in eastern China.