Nitrogen is widely used to prevent the spontaneous combustion of coal in underground coal mines. A spontaneous combustion-prone coal seam was studied to investigate the restraining effect of nitrogen on coal oxidation...Nitrogen is widely used to prevent the spontaneous combustion of coal in underground coal mines. A spontaneous combustion-prone coal seam was studied to investigate the restraining effect of nitrogen on coal oxidation in different oxidation stages, based on non-isothermal thermogravimetry-differential scanning calorimetry(TG-DSC) and electron paramagnetic resonance(EPR) experiments. We found that the key feature temperatures grow steadily with increasing nitrogen in the oxidation environment,resulting in longer oxidation stages. The most significant finding is that there is a stagnation of the inhibitory effect of nitrogen on coal oxidation in the range of 85.0–95.0% nitrogen in the slow and the rapid oxidation stages, owing to the competitive adsorption of coal by nitrogen and oxygen. However, the restraining effect cannot be reflected by the kinetic parameters of the coal before it reaches the thermal decomposition and combustion stage. Nitrogen can also affect free radical types and free radical concentrations during coal oxidation: the higher the concentration of nitrogen in the oxidation environment, the greater the number of free radical types and the lower the free radical concentration. This experimental study improves the understanding of the restraining effect of nitrogen on coal oxidation in different oxidation stages and provides an important reference for coal fire prevention in spontaneous combustionprone coal seams.展开更多
The production of CaC2 from coke/lime powders and compressed powder pellets are low cost and fast processes. A number of studies have reported the reaction kinetics of these reactions but they are still not well under...The production of CaC2 from coke/lime powders and compressed powder pellets are low cost and fast processes. A number of studies have reported the reaction kinetics of these reactions but they are still not well understood and the proposed kinetic models are not comparable due to differences in the reaction conditions. Therefore the reaction behavior of CaO/C powders (0.074 mm) and cubes (5 mm × 5 mm × (4.6-5.1) mm) compressed from a mixture of powders have been studied using thermal gravimetric analysis (TGA) at 1700- 1850 ℃. Kinetic models were obtained from the TGA data using isoconversional and model-fitting methods. The reaction rates for the compressed feeds were lower than those for the powder feeds. This is due to the reduced surface area of the compressed samples which inhibits heat transfer from the surrounding environment (or the heating source) to the sample. The compression pressure had little influence on the reaction rate. The reaction kinetics of both the powder and the compressed feeds can be described by the contracting volume modelf(α) = 3(1 -α)^2/3, where a is the conversion rate of reactant. The apparent activation energy and pre-exponential factor of the powder feed were estimated to 346-354 kJ·mol^-1 and 5.9 x 10^7 min^-1, respectively, whereas those of the compressed feed were 305-327 kJ·mol^-1 and 3.6 ×10^6 min^-1, respectively.展开更多
基金supported by the National Key R&D Program of China (2018YFC0807900)“Double First Rate” Independent Innovation Project of CUMT (2018ZZCX05)
文摘Nitrogen is widely used to prevent the spontaneous combustion of coal in underground coal mines. A spontaneous combustion-prone coal seam was studied to investigate the restraining effect of nitrogen on coal oxidation in different oxidation stages, based on non-isothermal thermogravimetry-differential scanning calorimetry(TG-DSC) and electron paramagnetic resonance(EPR) experiments. We found that the key feature temperatures grow steadily with increasing nitrogen in the oxidation environment,resulting in longer oxidation stages. The most significant finding is that there is a stagnation of the inhibitory effect of nitrogen on coal oxidation in the range of 85.0–95.0% nitrogen in the slow and the rapid oxidation stages, owing to the competitive adsorption of coal by nitrogen and oxygen. However, the restraining effect cannot be reflected by the kinetic parameters of the coal before it reaches the thermal decomposition and combustion stage. Nitrogen can also affect free radical types and free radical concentrations during coal oxidation: the higher the concentration of nitrogen in the oxidation environment, the greater the number of free radical types and the lower the free radical concentration. This experimental study improves the understanding of the restraining effect of nitrogen on coal oxidation in different oxidation stages and provides an important reference for coal fire prevention in spontaneous combustionprone coal seams.
基金Acknowledgements Financial support from the National Basic Research Program of China (2011CB201306) and the National Natural Science Foundation of China (Grant No. 20976011) are acknowledged.
文摘The production of CaC2 from coke/lime powders and compressed powder pellets are low cost and fast processes. A number of studies have reported the reaction kinetics of these reactions but they are still not well understood and the proposed kinetic models are not comparable due to differences in the reaction conditions. Therefore the reaction behavior of CaO/C powders (0.074 mm) and cubes (5 mm × 5 mm × (4.6-5.1) mm) compressed from a mixture of powders have been studied using thermal gravimetric analysis (TGA) at 1700- 1850 ℃. Kinetic models were obtained from the TGA data using isoconversional and model-fitting methods. The reaction rates for the compressed feeds were lower than those for the powder feeds. This is due to the reduced surface area of the compressed samples which inhibits heat transfer from the surrounding environment (or the heating source) to the sample. The compression pressure had little influence on the reaction rate. The reaction kinetics of both the powder and the compressed feeds can be described by the contracting volume modelf(α) = 3(1 -α)^2/3, where a is the conversion rate of reactant. The apparent activation energy and pre-exponential factor of the powder feed were estimated to 346-354 kJ·mol^-1 and 5.9 x 10^7 min^-1, respectively, whereas those of the compressed feed were 305-327 kJ·mol^-1 and 3.6 ×10^6 min^-1, respectively.