In northwestern China, there has been a change from traditional cultivation system (TC) with no mulching and flood irrigation to a more modern cultivation system (MC) using plastic film mulching with drip irrigati...In northwestern China, there has been a change from traditional cultivation system (TC) with no mulching and flood irrigation to a more modern cultivation system (MC) using plastic film mulching with drip irrigation. A field study was conducted to compare soil 'C02 concentrations and soil surface COs fluxes between TC and MC systems during a cotton growing season. CO2 concentrations in the soil profile were higher in the MC system (3107-9212μL L-1) than in the TC system (1 275-8994 μL L-1) but the rate of CO2 flux was lower in the MC system. Possible reasons for this included decreased gas diffusion and higher soil moisture due to the mulching cover in the MC system, and the consumption of soil CO2 by weathering reactions. Over the whole cotton growing season, accumulated rates of CO2 flux were 300 and 394 g C m-2 for the MC and TC systems, respectively. When agricultural practices were converted from traditional cultivation to a plastic film mulching system, soil CO2 emissions could be reduced by approximately 100 g C m-2 year-1 in agricultural lands in arid and/or semi-arid areas of northern and northwestern China.展开更多
This short review deals with soils as an important source of the greenhouse gas N2O. The production and consumption of N2O in soils mainly involve biotic processes: the anaerobic process of denitrification and the aer...This short review deals with soils as an important source of the greenhouse gas N2O. The production and consumption of N2O in soils mainly involve biotic processes: the anaerobic process of denitrification and the aerobic process of nitrification. The factors that significantly influence agricultural N2O emissions mainly concern the agricultural practices (N application rate, crop type, fertilizer type) and soil conditions (soil moisture, soil organic C content, soil pH and texture). Large variability of N2O fluxes is known to occur both at different spatial and temporal scales. Currently new techniques could help to improve the capture of the spatial variability. Continuous measurement systems with automatic chambers could also help to capture temporal variability and consequently to improve quantification of N2O emissions by soils. Some attempts for mitigating soil N2O emissions, either by modifying agricultural practices or by managing soil microbial functioning taking into account the origin of the soil N2O emission variability, are reviewed.展开更多
基金Supported by the National Natural Science Foundation of China (No. 40971148)the Program of 100 Distinguished Young Scientists of the Chinese Academy of Sciences
文摘In northwestern China, there has been a change from traditional cultivation system (TC) with no mulching and flood irrigation to a more modern cultivation system (MC) using plastic film mulching with drip irrigation. A field study was conducted to compare soil 'C02 concentrations and soil surface COs fluxes between TC and MC systems during a cotton growing season. CO2 concentrations in the soil profile were higher in the MC system (3107-9212μL L-1) than in the TC system (1 275-8994 μL L-1) but the rate of CO2 flux was lower in the MC system. Possible reasons for this included decreased gas diffusion and higher soil moisture due to the mulching cover in the MC system, and the consumption of soil CO2 by weathering reactions. Over the whole cotton growing season, accumulated rates of CO2 flux were 300 and 394 g C m-2 for the MC and TC systems, respectively. When agricultural practices were converted from traditional cultivation to a plastic film mulching system, soil CO2 emissions could be reduced by approximately 100 g C m-2 year-1 in agricultural lands in arid and/or semi-arid areas of northern and northwestern China.
基金Supported by the Region Centre, the Fonds Européen de Développement Régional and the INRA, France, through the SpatioFlux Program
文摘This short review deals with soils as an important source of the greenhouse gas N2O. The production and consumption of N2O in soils mainly involve biotic processes: the anaerobic process of denitrification and the aerobic process of nitrification. The factors that significantly influence agricultural N2O emissions mainly concern the agricultural practices (N application rate, crop type, fertilizer type) and soil conditions (soil moisture, soil organic C content, soil pH and texture). Large variability of N2O fluxes is known to occur both at different spatial and temporal scales. Currently new techniques could help to improve the capture of the spatial variability. Continuous measurement systems with automatic chambers could also help to capture temporal variability and consequently to improve quantification of N2O emissions by soils. Some attempts for mitigating soil N2O emissions, either by modifying agricultural practices or by managing soil microbial functioning taking into account the origin of the soil N2O emission variability, are reviewed.