We develop a new kind of underwater inductive coupling power transfer(ICPT)system to evaluate wireless power transfer in autonomous underwater vehicle(AUV)docking applications.Parameters that determine the performance...We develop a new kind of underwater inductive coupling power transfer(ICPT)system to evaluate wireless power transfer in autonomous underwater vehicle(AUV)docking applications.Parameters that determine the performance of the system are systematically analyzed through mathematical methods.A circuit simulation model and a finite element analysis(FEA)simulation model are developed to study the power losses of the system,including copper loss in coils,semiconductor loss in circuits,and eddy current loss in transmission media.The characteristics of the power losses can provide guidelines to improve the efficiency of ICPT systems.Calculation results and simulation results are validated by relevant experiments of the prototype system.The output power of the prototype system is up to 45 W and the efficiency is up to 0.84.The preliminary results indicate that the efficiency will increase as the transmission power is raised by increasing the input voltage.When the output power reaches 500 W,the efficiency is expected to exceed 0.94.The efficiency can be further improved by choosing proper semiconductors and coils.The analysis methods prove effective in predicting the performance of similar ICPT systems and should be useful in designing new systems.展开更多
为了研究长距离交流输电线路上并联电抗器布置对功率传输的影响,基于长距离超、特高压输电线路分布参数等效电路及二端口模型,分析了传输线路的最大传输功率及最大传输效率,推导了串补条件下两种并联电抗器布置方案的级联传输矩阵。采用...为了研究长距离交流输电线路上并联电抗器布置对功率传输的影响,基于长距离超、特高压输电线路分布参数等效电路及二端口模型,分析了传输线路的最大传输功率及最大传输效率,推导了串补条件下两种并联电抗器布置方案的级联传输矩阵。采用500 k V、1 100 k V线路典型参数,针对并联电抗器布置对最大传输功率与最大传输效率的影响进行数值模拟分析。研究结果表明并联电抗器位置在发送端与中点串补电容之间或者接收端与中点串补电容之间变化时,最大传输功率与最大传输效率均随其位置变化而发生变化。同时,并联电抗器补偿度也会影响功率传输,随着并联电抗器补偿度的增加最大传输功率及最大传输效率均会降低。展开更多
基金Project supported by the National High-Tech R&D Program of China(No.2013AA09A414)the National Natural Science Foundation of China(No.51221004)the Interdisciplinary Research Foundation of Zhejiang University(No.2012HY003A)
文摘We develop a new kind of underwater inductive coupling power transfer(ICPT)system to evaluate wireless power transfer in autonomous underwater vehicle(AUV)docking applications.Parameters that determine the performance of the system are systematically analyzed through mathematical methods.A circuit simulation model and a finite element analysis(FEA)simulation model are developed to study the power losses of the system,including copper loss in coils,semiconductor loss in circuits,and eddy current loss in transmission media.The characteristics of the power losses can provide guidelines to improve the efficiency of ICPT systems.Calculation results and simulation results are validated by relevant experiments of the prototype system.The output power of the prototype system is up to 45 W and the efficiency is up to 0.84.The preliminary results indicate that the efficiency will increase as the transmission power is raised by increasing the input voltage.When the output power reaches 500 W,the efficiency is expected to exceed 0.94.The efficiency can be further improved by choosing proper semiconductors and coils.The analysis methods prove effective in predicting the performance of similar ICPT systems and should be useful in designing new systems.
文摘为了研究长距离交流输电线路上并联电抗器布置对功率传输的影响,基于长距离超、特高压输电线路分布参数等效电路及二端口模型,分析了传输线路的最大传输功率及最大传输效率,推导了串补条件下两种并联电抗器布置方案的级联传输矩阵。采用500 k V、1 100 k V线路典型参数,针对并联电抗器布置对最大传输功率与最大传输效率的影响进行数值模拟分析。研究结果表明并联电抗器位置在发送端与中点串补电容之间或者接收端与中点串补电容之间变化时,最大传输功率与最大传输效率均随其位置变化而发生变化。同时,并联电抗器补偿度也会影响功率传输,随着并联电抗器补偿度的增加最大传输功率及最大传输效率均会降低。