The rapidly increasing penetration of electric vehicles(EVs) in modern metropolises has been witnessed during the past decade, inspired by financial subsidies as well as public awareness of climate change and environm...The rapidly increasing penetration of electric vehicles(EVs) in modern metropolises has been witnessed during the past decade, inspired by financial subsidies as well as public awareness of climate change and environment pro-tection. Integrating charging facilities, especially highpower chargers in fast charging stations, into power distribution systems remarkably alters the traditional load flow pattern, and thus imposes great challenges on the operation of distribution network in which controllable resources are rare. On the other hand, provided with appropriate incentives, the energy storage capability of electric vehicle offers a unique opportunity to facilitate the integration of distributed wind and solar power generation into power distribution system. The above trends call for thorough investigation and research on the interdependence between transportation system and power distribution system. This paper conducts a comprehensive survey on this line of research. The basic models of transportation system and power distribution system are introduced,especially the user equilibrium model, which describes the vehicular flow on each road segment and is not familiar to the readers in power system community. The modelling of interdependence across the two systems is highlighted.Taking into account such interdependence, applications ranging from long-term planning to short-term operation are reviewed with emphasis on comparing the description of traffic-power interdependence. Finally, an outlook of prospective directions and key technologies in future research is summarized.展开更多
This study investigated the influence of precipitators and wet flue gas desulfurization equipment on characteristics of PM_(2.5)emission from coal-fired power stations.We measured size distribution and removal efficie...This study investigated the influence of precipitators and wet flue gas desulfurization equipment on characteristics of PM_(2.5)emission from coal-fired power stations.We measured size distribution and removal efficiencies,including hybrid electrostatic precipitator/bag filters(ESP/BAGs)which have rarely been studied.A bimodal distribution of particle concentrations was observed at the inlet of each precipitator.After the precipitators,particle concentrations were significantly reduced.Although a bimodal distribution was still observed,all peak positions shifted to the smaller end.The removal efficiencies of hybrid ESP/BAGs reached 99%for PM_(2.5),which is considerably higher than those for other types of precipitators.In particular,the influence of hybrid ESP/BAG operating conditions on the performance of dust removal was explored.The efficiency of hybrid ESP/BAGs decreased by 1.9%when the first electrostatic field was shut down.The concentrations and distributions of particulate matter were also measured in three coal-fired power plants before and after desulfurization devices.The results showed diverse removal efficiencies for different desulfurization towers.The reason for the difference requires further research.We estimated the influence of removal technology for particulate matter on total emissions in China.Substituting ESPs with hybrid ESP/BAGs could reduce the total emissions to 104.3 thousand tons,with 47.48 thousand tons of PM_(2.5).展开更多
基金support by the Young Elite Scientists Program of CSEE (No. JLB-2018-95)the National Natural Science Foundation of China (No. 51621065, No. U1766203)+1 种基金the support by FEDER funds through COMPETE 2020by Portuguese funds through FCT, under SAICT-PAC/0004/2015 (No. POCI-01-0145-FEDER-016434), 02/SAICT/2017 (No. POCI-01-0145-FEDER-029803) and UID/EEA/50014/2019 (No. POCI-01-0145-FEDER-006961)
文摘The rapidly increasing penetration of electric vehicles(EVs) in modern metropolises has been witnessed during the past decade, inspired by financial subsidies as well as public awareness of climate change and environment pro-tection. Integrating charging facilities, especially highpower chargers in fast charging stations, into power distribution systems remarkably alters the traditional load flow pattern, and thus imposes great challenges on the operation of distribution network in which controllable resources are rare. On the other hand, provided with appropriate incentives, the energy storage capability of electric vehicle offers a unique opportunity to facilitate the integration of distributed wind and solar power generation into power distribution system. The above trends call for thorough investigation and research on the interdependence between transportation system and power distribution system. This paper conducts a comprehensive survey on this line of research. The basic models of transportation system and power distribution system are introduced,especially the user equilibrium model, which describes the vehicular flow on each road segment and is not familiar to the readers in power system community. The modelling of interdependence across the two systems is highlighted.Taking into account such interdependence, applications ranging from long-term planning to short-term operation are reviewed with emphasis on comparing the description of traffic-power interdependence. Finally, an outlook of prospective directions and key technologies in future research is summarized.
基金Supported by the National Basic Research Pro-gram of China(973 Program)(2013CB228506).
文摘This study investigated the influence of precipitators and wet flue gas desulfurization equipment on characteristics of PM_(2.5)emission from coal-fired power stations.We measured size distribution and removal efficiencies,including hybrid electrostatic precipitator/bag filters(ESP/BAGs)which have rarely been studied.A bimodal distribution of particle concentrations was observed at the inlet of each precipitator.After the precipitators,particle concentrations were significantly reduced.Although a bimodal distribution was still observed,all peak positions shifted to the smaller end.The removal efficiencies of hybrid ESP/BAGs reached 99%for PM_(2.5),which is considerably higher than those for other types of precipitators.In particular,the influence of hybrid ESP/BAG operating conditions on the performance of dust removal was explored.The efficiency of hybrid ESP/BAGs decreased by 1.9%when the first electrostatic field was shut down.The concentrations and distributions of particulate matter were also measured in three coal-fired power plants before and after desulfurization devices.The results showed diverse removal efficiencies for different desulfurization towers.The reason for the difference requires further research.We estimated the influence of removal technology for particulate matter on total emissions in China.Substituting ESPs with hybrid ESP/BAGs could reduce the total emissions to 104.3 thousand tons,with 47.48 thousand tons of PM_(2.5).