采用 S 变换和支持向量机进行电能质量扰动的分类识别。作为连续小波变换和短时傅立叶变换的发展,S 变换引入了宽度与频率成反向变化的高斯窗,具有与频率相关的分辨率。由于 S 变换具有良好的时频特性,因而非常适合于进行电能质量扰动...采用 S 变换和支持向量机进行电能质量扰动的分类识别。作为连续小波变换和短时傅立叶变换的发展,S 变换引入了宽度与频率成反向变化的高斯窗,具有与频率相关的分辨率。由于 S 变换具有良好的时频特性,因而非常适合于进行电能质量扰动信号特征提取。首先通过 S 变换进行扰动信号特征提取,然后构造支持向量机分类树进行扰动分类。算例表明该方案具有分类准确率高,对噪声不敏感,训练样本少等优点,是电能质量扰动识别的有效方法。展开更多
介绍了一种新的非线性、非平稳信号分析方法——局部均值分解(local mean decomposition,LMD),分析了LMD用于扰动信号检测时的优缺点及原因。在此基础上,提出一种改进的局部均值分解(improved local mean decomposition,ILMD)电能质量...介绍了一种新的非线性、非平稳信号分析方法——局部均值分解(local mean decomposition,LMD),分析了LMD用于扰动信号检测时的优缺点及原因。在此基础上,提出一种改进的局部均值分解(improved local mean decomposition,ILMD)电能质量扰动检测及时频分析新方法,该方法由LMD和希尔伯特变换(Hilbert Transform,HT)2部分组成。先用LMD提取信号的乘积函数(product function,PF),由PF分量的调幅函数可得信号瞬时幅值;再对PF分量进行HT求取瞬时频率。ILMD方法可有效定位发生扰动的起止时刻,克服LMD在定位能力上的不足。与采用希尔伯特黄变换(Hilbert Huang transform,HHT)方法相比,ILMD具有瞬时幅值函数端部失真小、瞬时幅频曲线波动小和幅值与频率检测精度高等优点。仿真信号和500 kV变电站电容器组投切时的电压信号分析结果证明所提方法的可行性和有效性。展开更多
文摘采用 S 变换和支持向量机进行电能质量扰动的分类识别。作为连续小波变换和短时傅立叶变换的发展,S 变换引入了宽度与频率成反向变化的高斯窗,具有与频率相关的分辨率。由于 S 变换具有良好的时频特性,因而非常适合于进行电能质量扰动信号特征提取。首先通过 S 变换进行扰动信号特征提取,然后构造支持向量机分类树进行扰动分类。算例表明该方案具有分类准确率高,对噪声不敏感,训练样本少等优点,是电能质量扰动识别的有效方法。
文摘介绍了一种新的非线性、非平稳信号分析方法——局部均值分解(local mean decomposition,LMD),分析了LMD用于扰动信号检测时的优缺点及原因。在此基础上,提出一种改进的局部均值分解(improved local mean decomposition,ILMD)电能质量扰动检测及时频分析新方法,该方法由LMD和希尔伯特变换(Hilbert Transform,HT)2部分组成。先用LMD提取信号的乘积函数(product function,PF),由PF分量的调幅函数可得信号瞬时幅值;再对PF分量进行HT求取瞬时频率。ILMD方法可有效定位发生扰动的起止时刻,克服LMD在定位能力上的不足。与采用希尔伯特黄变换(Hilbert Huang transform,HHT)方法相比,ILMD具有瞬时幅值函数端部失真小、瞬时幅频曲线波动小和幅值与频率检测精度高等优点。仿真信号和500 kV变电站电容器组投切时的电压信号分析结果证明所提方法的可行性和有效性。