Microgrids are being developed as a building block for future smart grid system.Key issues for the control and operation of microgrid include integration technologies and energy management schemes.This paper presents ...Microgrids are being developed as a building block for future smart grid system.Key issues for the control and operation of microgrid include integration technologies and energy management schemes.This paper presents an overview of grid integration and energy management strategies of microgrids.It covers a review of power electronics interface topologies for different types of distributed generation(DG)units in a microgrid,a discussion of energy management strategies,as well as the DG interfacing converter control schemes.Considering the intermittent nature of many renewable energy based DG units,the ancillary services of DGs using the available interfacing converter rating are also discussed in the paper.展开更多
为拓展并联型有源电力滤波器(active power filter,APF)的应用,通过采用电路等效分析的方法,研究并联型APF对电压源型非线性负载的补偿特性,重点分析负载谐波电流放大效应,定性与定量地解释产生此效应的原因。在此基础上,从电路拓扑以及...为拓展并联型有源电力滤波器(active power filter,APF)的应用,通过采用电路等效分析的方法,研究并联型APF对电压源型非线性负载的补偿特性,重点分析负载谐波电流放大效应,定性与定量地解释产生此效应的原因。在此基础上,从电路拓扑以及APF控制两方面提出抑制谐波放大效应的措施,使得并联型APF对电压源型非线性负载取得良好的补偿效果。仿真与实验结果验证了理论分析的正确性。展开更多
文摘Microgrids are being developed as a building block for future smart grid system.Key issues for the control and operation of microgrid include integration technologies and energy management schemes.This paper presents an overview of grid integration and energy management strategies of microgrids.It covers a review of power electronics interface topologies for different types of distributed generation(DG)units in a microgrid,a discussion of energy management strategies,as well as the DG interfacing converter control schemes.Considering the intermittent nature of many renewable energy based DG units,the ancillary services of DGs using the available interfacing converter rating are also discussed in the paper.
文摘为拓展并联型有源电力滤波器(active power filter,APF)的应用,通过采用电路等效分析的方法,研究并联型APF对电压源型非线性负载的补偿特性,重点分析负载谐波电流放大效应,定性与定量地解释产生此效应的原因。在此基础上,从电路拓扑以及APF控制两方面提出抑制谐波放大效应的措施,使得并联型APF对电压源型非线性负载取得良好的补偿效果。仿真与实验结果验证了理论分析的正确性。