期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于多模型融合的电力运检命名实体识别 被引量:2
1
作者 孙玉芹 肖静婷 王海超 《科学技术与工程》 北大核心 2023年第36期15545-15552,共8页
为有效解决构建电力运检知识图谱的关键步骤之一的电力运检命名实体识别问题,通过构建一种基于Stacking多模型融合的隐马尔可夫-条件随机场-双向长短期记忆网络(hidden Markov-conditional random fields-bi-directional long short-ter... 为有效解决构建电力运检知识图谱的关键步骤之一的电力运检命名实体识别问题,通过构建一种基于Stacking多模型融合的隐马尔可夫-条件随机场-双向长短期记忆网络(hidden Markov-conditional random fields-bi-directional long short-term,HCB)模型方法研究了电力运检命名实体识别问题。HCB模型分为两层,第一层使用隐马尔可夫模型(hidden Markov model,HMM)、条件随机场(conditional random fields,CRF)和双向长短期记忆网络(bi-directional long short-term memory,Bi-LSTM)模型进行训练预测,再将预测结果输入第二层的CRF模型进行训练,经过双层模型训练预测得出最后的命名实体。结果表明:在电力运检命名实体识别问题上HCB模型的精确率、召回率及F1值等指标明显优于单模型以及其他的融合模型。可见HCB模型能有效解决电力运检命名实体识别问题。 展开更多
关键词 电力运检知识图谱 多模型融合 命名实体识别 隐马尔可夫-条件随机场-双向长短期记忆网络(HCB)模型
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部