This paper presents a P-Q coordination based highvoltage ride through(HVRT) control strategy for doubly fed induction generators(DFIGs) based on a combined Q-V control and P-V de-loading control. The active/reactive p...This paper presents a P-Q coordination based highvoltage ride through(HVRT) control strategy for doubly fed induction generators(DFIGs) based on a combined Q-V control and P-V de-loading control. The active/reactive power injection effect of DFIG on transient overvoltage is firstly analyzed and the reactive power capacity evaluation of DFIG considering its de-loading operation is then conducted. In the proposed strategy, the reactive power limit of DFIG can be flexibly extended during the transient process in coordination with its active power adjustment. As a result, the transient overvoltage caused by DC bipolar block can be effectively suppressed. Moreover, key outer loop parameters such as Q-V control coefficient and deloading coefficient can be determined based on the voltage level of point of common coupling(PCC) and the available power capacity of DFIG. Finally, case studies based on MATLAB/Simulink simulation are used to verify the effectiveness of the proposed control strategy.展开更多
On the basis of ice- induced forced vibration model, ice- induced displacement responses of offshore fixed platforms are investigated in both time domain and frequency domain. The relationships of ice-induced displace...On the basis of ice- induced forced vibration model, ice- induced displacement responses of offshore fixed platforms are investigated in both time domain and frequency domain. The relationships of ice-induced displacement responses with ice breaking modes, ice acting directions and platform structures are analyzed and determined. The results lead to an important conclusion obtained for the first time that ice breaking frequency and the natural frequency of the first mode of the platform are the two main factors that dominate the degree of vibration. The present work provides a firm basis for both design and operation of fixed platforms against ice loading.展开更多
In this study,a phenomenological model of the radio frequency(RF)behavior of a superconducting cavity fundamental power coupler is proposed by analyzing the simulation results of a transient beam-loading process in an...In this study,a phenomenological model of the radio frequency(RF)behavior of a superconducting cavity fundamental power coupler is proposed by analyzing the simulation results of a transient beam-loading process in an extremely overcoupled superconducting cavity.Using this phenomenological model,the calculation of the transient reflected power from a superconducting cavity under beam loading can be mathematically simplified to algebraic operations without solving the differential equation governing the transient beam-loading process,while maintaining the calculation accuracy.Moreover,this phenomenological model can facilitate an intuitive understanding of the significant surge in the time evolution of reflected power from a superconducting cavity in certain beam-loading processes.The validity of this phenomenological model was carefully examined in various beam-loading processes and cavity conditions,and the method based on this phenomenological model was utilized in the transient RF analysis of the superconducting cavity system of the CAFe Linac,achieving satisfactory results.展开更多
基金jointly supported by the National Natural Science Foundation of China (No.51677165,No.51837004)the National Key R&D Program of China (No.2017YFB0902000)。
文摘This paper presents a P-Q coordination based highvoltage ride through(HVRT) control strategy for doubly fed induction generators(DFIGs) based on a combined Q-V control and P-V de-loading control. The active/reactive power injection effect of DFIG on transient overvoltage is firstly analyzed and the reactive power capacity evaluation of DFIG considering its de-loading operation is then conducted. In the proposed strategy, the reactive power limit of DFIG can be flexibly extended during the transient process in coordination with its active power adjustment. As a result, the transient overvoltage caused by DC bipolar block can be effectively suppressed. Moreover, key outer loop parameters such as Q-V control coefficient and deloading coefficient can be determined based on the voltage level of point of common coupling(PCC) and the available power capacity of DFIG. Finally, case studies based on MATLAB/Simulink simulation are used to verify the effectiveness of the proposed control strategy.
基金The project was financially supported by China Postdoctor Science Foundationthe Key Project Foundation of the Chinese Academy of Sciences and China National Offshore Oil Corporation
文摘On the basis of ice- induced forced vibration model, ice- induced displacement responses of offshore fixed platforms are investigated in both time domain and frequency domain. The relationships of ice-induced displacement responses with ice breaking modes, ice acting directions and platform structures are analyzed and determined. The results lead to an important conclusion obtained for the first time that ice breaking frequency and the natural frequency of the first mode of the platform are the two main factors that dominate the degree of vibration. The present work provides a firm basis for both design and operation of fixed platforms against ice loading.
基金supported by the CAS“Light of West China”Program (No.29Y936020)National Natural Science Foundation of China (No.12105331)Strategic Priority Research Program of the Chinese Academy of Sciences (No.XDB34010102)。
文摘In this study,a phenomenological model of the radio frequency(RF)behavior of a superconducting cavity fundamental power coupler is proposed by analyzing the simulation results of a transient beam-loading process in an extremely overcoupled superconducting cavity.Using this phenomenological model,the calculation of the transient reflected power from a superconducting cavity under beam loading can be mathematically simplified to algebraic operations without solving the differential equation governing the transient beam-loading process,while maintaining the calculation accuracy.Moreover,this phenomenological model can facilitate an intuitive understanding of the significant surge in the time evolution of reflected power from a superconducting cavity in certain beam-loading processes.The validity of this phenomenological model was carefully examined in various beam-loading processes and cavity conditions,and the method based on this phenomenological model was utilized in the transient RF analysis of the superconducting cavity system of the CAFe Linac,achieving satisfactory results.