The rapidly increasing penetration of electric vehicles(EVs) in modern metropolises has been witnessed during the past decade, inspired by financial subsidies as well as public awareness of climate change and environm...The rapidly increasing penetration of electric vehicles(EVs) in modern metropolises has been witnessed during the past decade, inspired by financial subsidies as well as public awareness of climate change and environment pro-tection. Integrating charging facilities, especially highpower chargers in fast charging stations, into power distribution systems remarkably alters the traditional load flow pattern, and thus imposes great challenges on the operation of distribution network in which controllable resources are rare. On the other hand, provided with appropriate incentives, the energy storage capability of electric vehicle offers a unique opportunity to facilitate the integration of distributed wind and solar power generation into power distribution system. The above trends call for thorough investigation and research on the interdependence between transportation system and power distribution system. This paper conducts a comprehensive survey on this line of research. The basic models of transportation system and power distribution system are introduced,especially the user equilibrium model, which describes the vehicular flow on each road segment and is not familiar to the readers in power system community. The modelling of interdependence across the two systems is highlighted.Taking into account such interdependence, applications ranging from long-term planning to short-term operation are reviewed with emphasis on comparing the description of traffic-power interdependence. Finally, an outlook of prospective directions and key technologies in future research is summarized.展开更多
Owing to potential regulation capacities from flexible resources in energy coupling,storage,and consumption links,central energy stations(CESs)can provide additional support to power distribution network(PDN)in case o...Owing to potential regulation capacities from flexible resources in energy coupling,storage,and consumption links,central energy stations(CESs)can provide additional support to power distribution network(PDN)in case of power disruption.However,existing research has not explicitly revealed the emergency response of PDN with leveraging multiple CESs.This paper proposes a decentralized self-healing strategy of PDN to minimize the entire load loss,in which multi-area CESs’potentials including thermal storage and building thermal inertia,as well as the flexible topology of PDN,are reasonably exploited for service recovery.For sake of privacy preservation,the co-optimization of PDN and CESs is realized in a decentralized manner using adaptive alternating direction method of multipliers(ADMM).Furtherly,bilateral risk management with conditional value-at-risk(CVaR)for PDN and risk constraints for CESs is integrated to deal with uncertainties from outage duration.Case studies are conducted on a modified IEEE 33-bus PDN with multiple CESs.Numerical results illustrate that the proposed strategy can fully utilize the potentials of multi-area CESs for coordinated load restoration.The effectiveness of the performance and behaviors’adaptation against random risks is also validated.展开更多
基金support by the Young Elite Scientists Program of CSEE (No. JLB-2018-95)the National Natural Science Foundation of China (No. 51621065, No. U1766203)+1 种基金the support by FEDER funds through COMPETE 2020by Portuguese funds through FCT, under SAICT-PAC/0004/2015 (No. POCI-01-0145-FEDER-016434), 02/SAICT/2017 (No. POCI-01-0145-FEDER-029803) and UID/EEA/50014/2019 (No. POCI-01-0145-FEDER-006961)
文摘The rapidly increasing penetration of electric vehicles(EVs) in modern metropolises has been witnessed during the past decade, inspired by financial subsidies as well as public awareness of climate change and environment pro-tection. Integrating charging facilities, especially highpower chargers in fast charging stations, into power distribution systems remarkably alters the traditional load flow pattern, and thus imposes great challenges on the operation of distribution network in which controllable resources are rare. On the other hand, provided with appropriate incentives, the energy storage capability of electric vehicle offers a unique opportunity to facilitate the integration of distributed wind and solar power generation into power distribution system. The above trends call for thorough investigation and research on the interdependence between transportation system and power distribution system. This paper conducts a comprehensive survey on this line of research. The basic models of transportation system and power distribution system are introduced,especially the user equilibrium model, which describes the vehicular flow on each road segment and is not familiar to the readers in power system community. The modelling of interdependence across the two systems is highlighted.Taking into account such interdependence, applications ranging from long-term planning to short-term operation are reviewed with emphasis on comparing the description of traffic-power interdependence. Finally, an outlook of prospective directions and key technologies in future research is summarized.
基金financially supported by the Fundamental Research Funds for the Central Universities(No.2021QN1066)。
文摘Owing to potential regulation capacities from flexible resources in energy coupling,storage,and consumption links,central energy stations(CESs)can provide additional support to power distribution network(PDN)in case of power disruption.However,existing research has not explicitly revealed the emergency response of PDN with leveraging multiple CESs.This paper proposes a decentralized self-healing strategy of PDN to minimize the entire load loss,in which multi-area CESs’potentials including thermal storage and building thermal inertia,as well as the flexible topology of PDN,are reasonably exploited for service recovery.For sake of privacy preservation,the co-optimization of PDN and CESs is realized in a decentralized manner using adaptive alternating direction method of multipliers(ADMM).Furtherly,bilateral risk management with conditional value-at-risk(CVaR)for PDN and risk constraints for CESs is integrated to deal with uncertainties from outage duration.Case studies are conducted on a modified IEEE 33-bus PDN with multiple CESs.Numerical results illustrate that the proposed strategy can fully utilize the potentials of multi-area CESs for coordinated load restoration.The effectiveness of the performance and behaviors’adaptation against random risks is also validated.