We try to find a fast and simple potential induced degradation effect (PID) test procedure for crystalline silicon solar cells. With sodium chloride (NaC1) solution as Na+ source, PVB as lamination material, we c...We try to find a fast and simple potential induced degradation effect (PID) test procedure for crystalline silicon solar cells. With sodium chloride (NaC1) solution as Na+ source, PVB as lamination material, we can carry out the test in 1 h. Solar cells with newly developed PID resistance process were also tested. The increase of reverse current of solar cell can be considered a key standard to determine if the solar cell was prone to PID. Moreover, it showed that the increase of reverse current for the PID resistance solar cell was less than 2. In addition, the test results of the solar cells fitted very well with that of the modules by standard procedure.展开更多
Solar cells are widely used to generate electric energy even at homes. It surely has a great advantage of sustainability. However, the potential induced degradation has been found to be an obstacle problem for practic...Solar cells are widely used to generate electric energy even at homes. It surely has a great advantage of sustainability. However, the potential induced degradation has been found to be an obstacle problem for practical use. It was reported that the main cause is the dielectric breakdown in the glass covered over the solar cells triggered by the thunderstroke. In this paper, the effects of the parameters such as the position of thunderstroke, the wave form, the peak value and the front duration of the lightning current, were examined by means of numerical calculation. For the lightning current, a step-like waveform and an impulse waveform were examined. The effect of the induced voltage was found to be independent of the waveform. The peak value, the front duration of the lightning current greatly affects the induced voltage.展开更多
The effects of the high voltage stress and other environmental conditions on crystalline silicon photovoltaic module performance have not been included in the IEC 61215 or other qualification standards. In this work, ...The effects of the high voltage stress and other environmental conditions on crystalline silicon photovoltaic module performance have not been included in the IEC 61215 or other qualification standards. In this work, we are to evaluate the potential induced degradation on p type crystalline silicon PV modules by three cases, one case is in room temperature, 100% relative humidity water bath, another is in room temperature, the front sheet coverage with aluminum foil and the other is in the 85°C, 85% relative humidity climate chamber. All the samples are applied with the -1000 V bias to active layers, respectively. Our current-voltage measurements and electroluminescence results showed in these modules power loss of 37.74%, 11.29% and 49.62%, respectively. These test results have shown that among high voltage effects the climate chamber is the harshest and fastest test. In this article we also showed that the ethylene vinyl acetate volume resistivity and soda-lime glass ingredients are important factors to PID failure. The high volume resistivity which is more than 1014 Ω·cm and Na less contents glass will mitigate the PID effect to ensure PID free.展开更多
Solar cells are well known as devices for sustainable electric energy generation. Nowadays the potential induced degradation has been brought up as an obstacle problem for practical use. In order to determine the caus...Solar cells are well known as devices for sustainable electric energy generation. Nowadays the potential induced degradation has been brought up as an obstacle problem for practical use. In order to determine the cause of this kind of degradation, numerical simulation by a finite difference time domain method has been performed for computational electromagnetics in the case that the thunder attacks the solar modules. The results show that the dielectric breakdown in the glass covered over the solar cells triggered by the thunderstroke is critical. So it is helpful to protect the dielectric breakdown in the glass from the thunderstroke.展开更多
文摘We try to find a fast and simple potential induced degradation effect (PID) test procedure for crystalline silicon solar cells. With sodium chloride (NaC1) solution as Na+ source, PVB as lamination material, we can carry out the test in 1 h. Solar cells with newly developed PID resistance process were also tested. The increase of reverse current of solar cell can be considered a key standard to determine if the solar cell was prone to PID. Moreover, it showed that the increase of reverse current for the PID resistance solar cell was less than 2. In addition, the test results of the solar cells fitted very well with that of the modules by standard procedure.
文摘Solar cells are widely used to generate electric energy even at homes. It surely has a great advantage of sustainability. However, the potential induced degradation has been found to be an obstacle problem for practical use. It was reported that the main cause is the dielectric breakdown in the glass covered over the solar cells triggered by the thunderstroke. In this paper, the effects of the parameters such as the position of thunderstroke, the wave form, the peak value and the front duration of the lightning current, were examined by means of numerical calculation. For the lightning current, a step-like waveform and an impulse waveform were examined. The effect of the induced voltage was found to be independent of the waveform. The peak value, the front duration of the lightning current greatly affects the induced voltage.
文摘The effects of the high voltage stress and other environmental conditions on crystalline silicon photovoltaic module performance have not been included in the IEC 61215 or other qualification standards. In this work, we are to evaluate the potential induced degradation on p type crystalline silicon PV modules by three cases, one case is in room temperature, 100% relative humidity water bath, another is in room temperature, the front sheet coverage with aluminum foil and the other is in the 85°C, 85% relative humidity climate chamber. All the samples are applied with the -1000 V bias to active layers, respectively. Our current-voltage measurements and electroluminescence results showed in these modules power loss of 37.74%, 11.29% and 49.62%, respectively. These test results have shown that among high voltage effects the climate chamber is the harshest and fastest test. In this article we also showed that the ethylene vinyl acetate volume resistivity and soda-lime glass ingredients are important factors to PID failure. The high volume resistivity which is more than 1014 Ω·cm and Na less contents glass will mitigate the PID effect to ensure PID free.
文摘Solar cells are well known as devices for sustainable electric energy generation. Nowadays the potential induced degradation has been brought up as an obstacle problem for practical use. In order to determine the cause of this kind of degradation, numerical simulation by a finite difference time domain method has been performed for computational electromagnetics in the case that the thunder attacks the solar modules. The results show that the dielectric breakdown in the glass covered over the solar cells triggered by the thunderstroke is critical. So it is helpful to protect the dielectric breakdown in the glass from the thunderstroke.