Based on the consecutive measurement (1995-1997) of meteorology and microclimate of artificial Pinus forest in Mount Dinghu, we calculated the potential evapotranspiration by using four different methods to discuss th...Based on the consecutive measurement (1995-1997) of meteorology and microclimate of artificial Pinus forest in Mount Dinghu, we calculated the potential evapotranspiration by using four different methods to discuss the method which is fit for forest ecosystem. The results are given as follows.1) In terms of the enviromental conditions of forest ecosystem, we redefined some parameters in Penman equation and used it to calculate the potential evapotranspiration of artificial Pinus forest ecosystem in Mount Dinghu.Preliminary result is that Penman equation is worth spreading for calculating the potential evapotranspiration of forest ecosystem,compared with several other methods.2) The annual average potential evapotranspiration of the artificial Pinus forest in Mount Dinghu is 937.55 mm,according to Penman equation. It is 50% of the rainfall in the corresponding period. The highest mean monthly potential evapotranspiration is July and the lowest mean monthly potential evapotranspiration is January. This is completely consistent with the variations of temperature.展开更多
An equation of state for electrolyte aqueous solution is developed by treating the ion-ion electrostatic and ion-solvent molecule interactions with primitive MSA and perturbation theory, respectively. The effect of th...An equation of state for electrolyte aqueous solution is developed by treating the ion-ion electrostatic and ion-solvent molecule interactions with primitive MSA and perturbation theory, respectively. The effect of the dielectric constant on the ionic chemical potential and the calculation accuracy of ionic mean activity coefficients for 2∶1 and 1∶1 type halide aqueous solution are discussed.By taking ionic Pauling diameter as ionic hard sphere diameter for anions and treating the cation hard sphere diameter as ionic strength dependent, the equation can be used to calculate ionic activity coefficients in the moderate concentration range with good accuracy.展开更多
Using the modified find some new exact solutions to Lie point symmetry groups and also get conservation laws, of the CK's direct method, we build the relationship between new solutions and old ones and the (3+1)-d...Using the modified find some new exact solutions to Lie point symmetry groups and also get conservation laws, of the CK's direct method, we build the relationship between new solutions and old ones and the (3+1)-dimensional potentiaial-YTSF equation. Baaed on the invariant group theory, Lie symmetries of the (3+1)-dimensional potential-YTSF equation are obtained. We equation with the given Lie symmetry.展开更多
In this paper,we find the solutions for fractional potential Korteweg-de Vries(p-KdV)and Benjamin equations using q-homotopy analysis transform method(q-HATM).The considered method is the mixture of q-homotopy analysi...In this paper,we find the solutions for fractional potential Korteweg-de Vries(p-KdV)and Benjamin equations using q-homotopy analysis transform method(q-HATM).The considered method is the mixture of q-homotopy analysis method and Laplace transform,and the Caputo fractional operator is considered in the present investigation.The projected solution procedure manipulates and controls the obtained results in a large admissible domain.Further,it offers a simple algorithm to adjust the convergence province of the obtained solution.To validate the q-HATM is accurate and reliable,the numerical simulations have been conducted for both equations and the outcomes are revealed through the plots and tables.Comparison between the obtained solutions with the exact solutions exhibits that,the considered method is efficient and effective in solving nonlinear problems associated with science and technology.展开更多
The wave/particle duality of particles in Physics is well known. Particles have properties that uniquely characterize them from one another, such as mass, charge and spin. Charged particles have associated Electric an...The wave/particle duality of particles in Physics is well known. Particles have properties that uniquely characterize them from one another, such as mass, charge and spin. Charged particles have associated Electric and Magnetic fields. Also, every moving particle has a De Broglie wavelength determined by its mass and velocity. This paper shows that all of these properties of a particle can be derived from a single wave function equation for that particle. Wave functions for the Electron and the Positron are presented and principles are provided that can be used to calculate the wave functions of all the fundamental particles in Physics. Fundamental particles such as electrons and positrons are considered to be point particles in the Standard Model of Physics and are not considered to have a structure. This paper demonstrates that they do indeed have structure and that this structure extends into the space around the particle’s center (in fact, they have infinite extent), but with rapidly diminishing energy density with the distance from that center. The particles are formed from Electromagnetic standing waves, which are stable solutions to the Schrödinger and Classical wave equations. This stable structure therefore accounts for both the wave and particle nature of these particles. In fact, all of their properties such as mass, spin and electric charge, can be accounted for from this structure. These particle properties appear to originate from a single point at the center of the wave function structure, in the same sort of way that the Shell theorem of gravity causes the gravity of a body to appear to all originate from a central point. This paper represents the first two fully characterized fundamental particles, with a complete description of their structure and properties, built up from the underlying Electromagnetic waves that comprise these and all fundamental particles.展开更多
Consider the existence of nontrivial solutions of homogeneous Dirichlet problem for a nonlinear elliptic equation with the critical potential in R2. By establishing a weighted inequality with the best constant, determ...Consider the existence of nontrivial solutions of homogeneous Dirichlet problem for a nonlinear elliptic equation with the critical potential in R2. By establishing a weighted inequality with the best constant, determine the critical potential in R2, and study the eigenvalues of Laplace equation with the critical potential. By the Pohozaev identity of a solution with a singular point and the Cauchy-Kovalevskaya theorem, obtain the nonexistence result of solutions with singular points to the nonlinear elliptic equation. Moreover, for the same problem, the existence results of multiple solutions are proved by the mountain pass theorem.展开更多
A shift sampling theory established by author (1997a) is a generalization of Fourier transform computation theory. Based on this theory, I develop an Algorithm-Error (A-E) equation of potential field transformatio...A shift sampling theory established by author (1997a) is a generalization of Fourier transform computation theory. Based on this theory, I develop an Algorithm-Error (A-E) equation of potential field transformations in the wavenumber domain, which not only gives a more flexible algorithm of potential field transformations, but also reveals the law of error of potential field transformations in the wavenumber domain. The DFT0η η(0.5, 0.5) reduction-to-pole (RTP) technique derived from the A-E equation significantly improves the resolution and accuracy of RTP anomalies at low magnetic latitudes, including the magnetic equator. The law (origin, form mechanism, and essential properties) of the edge oscillation revealed by the A-E equation points out theoretically a way of improving the effect of existing padding methods in high-pass transformations in the wavenumber domain.展开更多
Studying the source of particle properties is the most important goal for scientists, so it was necessary to use the means available to us, which is physical logic to study these properties. In this paper, you will ex...Studying the source of particle properties is the most important goal for scientists, so it was necessary to use the means available to us, which is physical logic to study these properties. In this paper, you will examine how the type of coordinates in which electromagnetic fields are distributed can have a role in detecting particle properties, specifically using the Riemann-Silberstein vector. Because electromagnetism it deals with electric and magnetic fields together for any electromagnetic sentence, and when we study it according to multiple coordinates and study its derivation by changing coordinates, we discover how the electromagnetic sentences are transformed from one particle to another.展开更多
The concept of approximate generalized conditional symmetry (A GCS) as a generalization to both approximate Lie point symmetry and generalized conditional symmetry is introduced, and it is applied to study the pertu...The concept of approximate generalized conditional symmetry (A GCS) as a generalization to both approximate Lie point symmetry and generalized conditional symmetry is introduced, and it is applied to study the perturbed nonlinear diffusion-convection equations. Complete classification of those perturbed equations which admit cerrain types of AGCSs is derived. Some approximate solutions to the resulting equations can be obtained via the AGCS and the corresponding unperturbed equations.展开更多
This paper is concerned with the blow-up solutions of the Gross-Pitaevskii equation. Using the concentration compact principle and the variational characterization of the corresponding ground state, we obtain the limi...This paper is concerned with the blow-up solutions of the Gross-Pitaevskii equation. Using the concentration compact principle and the variational characterization of the corresponding ground state, we obtain the limiting profile of blow-up solutions with critical mass in the corresponding weighted energy space. Moreover, we extend this result to small super-critical mass case by the variational methods and scaling technique.展开更多
We investigate the spin and pseudospin symmetries of the Dirac equation under modified deformed Hylleraas potential via a Pekeris approximation and the Nikiforov-Uvarov technique. A tensor interaction of Coulomb form ...We investigate the spin and pseudospin symmetries of the Dirac equation under modified deformed Hylleraas potential via a Pekeris approximation and the Nikiforov-Uvarov technique. A tensor interaction of Coulomb form is considered and its degeneracy-removing role is discussed in detail. The solutions are reported for an arbitrary quantum number in a compact form and useful numerical data are included.展开更多
文摘Based on the consecutive measurement (1995-1997) of meteorology and microclimate of artificial Pinus forest in Mount Dinghu, we calculated the potential evapotranspiration by using four different methods to discuss the method which is fit for forest ecosystem. The results are given as follows.1) In terms of the enviromental conditions of forest ecosystem, we redefined some parameters in Penman equation and used it to calculate the potential evapotranspiration of artificial Pinus forest ecosystem in Mount Dinghu.Preliminary result is that Penman equation is worth spreading for calculating the potential evapotranspiration of forest ecosystem,compared with several other methods.2) The annual average potential evapotranspiration of the artificial Pinus forest in Mount Dinghu is 937.55 mm,according to Penman equation. It is 50% of the rainfall in the corresponding period. The highest mean monthly potential evapotranspiration is July and the lowest mean monthly potential evapotranspiration is January. This is completely consistent with the variations of temperature.
文摘An equation of state for electrolyte aqueous solution is developed by treating the ion-ion electrostatic and ion-solvent molecule interactions with primitive MSA and perturbation theory, respectively. The effect of the dielectric constant on the ionic chemical potential and the calculation accuracy of ionic mean activity coefficients for 2∶1 and 1∶1 type halide aqueous solution are discussed.By taking ionic Pauling diameter as ionic hard sphere diameter for anions and treating the cation hard sphere diameter as ionic strength dependent, the equation can be used to calculate ionic activity coefficients in the moderate concentration range with good accuracy.
基金The project supported by the Natural Science Foundation of Shandong Province of China under Grant No. 2004zx16 tCorresponding author, E-maih zzlh100@163.com
文摘Using the modified find some new exact solutions to Lie point symmetry groups and also get conservation laws, of the CK's direct method, we build the relationship between new solutions and old ones and the (3+1)-dimensional potentiaial-YTSF equation. Baaed on the invariant group theory, Lie symmetries of the (3+1)-dimensional potential-YTSF equation are obtained. We equation with the given Lie symmetry.
文摘In this paper,we find the solutions for fractional potential Korteweg-de Vries(p-KdV)and Benjamin equations using q-homotopy analysis transform method(q-HATM).The considered method is the mixture of q-homotopy analysis method and Laplace transform,and the Caputo fractional operator is considered in the present investigation.The projected solution procedure manipulates and controls the obtained results in a large admissible domain.Further,it offers a simple algorithm to adjust the convergence province of the obtained solution.To validate the q-HATM is accurate and reliable,the numerical simulations have been conducted for both equations and the outcomes are revealed through the plots and tables.Comparison between the obtained solutions with the exact solutions exhibits that,the considered method is efficient and effective in solving nonlinear problems associated with science and technology.
文摘The wave/particle duality of particles in Physics is well known. Particles have properties that uniquely characterize them from one another, such as mass, charge and spin. Charged particles have associated Electric and Magnetic fields. Also, every moving particle has a De Broglie wavelength determined by its mass and velocity. This paper shows that all of these properties of a particle can be derived from a single wave function equation for that particle. Wave functions for the Electron and the Positron are presented and principles are provided that can be used to calculate the wave functions of all the fundamental particles in Physics. Fundamental particles such as electrons and positrons are considered to be point particles in the Standard Model of Physics and are not considered to have a structure. This paper demonstrates that they do indeed have structure and that this structure extends into the space around the particle’s center (in fact, they have infinite extent), but with rapidly diminishing energy density with the distance from that center. The particles are formed from Electromagnetic standing waves, which are stable solutions to the Schrödinger and Classical wave equations. This stable structure therefore accounts for both the wave and particle nature of these particles. In fact, all of their properties such as mass, spin and electric charge, can be accounted for from this structure. These particle properties appear to originate from a single point at the center of the wave function structure, in the same sort of way that the Shell theorem of gravity causes the gravity of a body to appear to all originate from a central point. This paper represents the first two fully characterized fundamental particles, with a complete description of their structure and properties, built up from the underlying Electromagnetic waves that comprise these and all fundamental particles.
基金This work was supported by the National Natural Science Foundation of China(Grant No.10171032)Natural Science Foundation of Guangdong Province.
文摘Consider the existence of nontrivial solutions of homogeneous Dirichlet problem for a nonlinear elliptic equation with the critical potential in R2. By establishing a weighted inequality with the best constant, determine the critical potential in R2, and study the eigenvalues of Laplace equation with the critical potential. By the Pohozaev identity of a solution with a singular point and the Cauchy-Kovalevskaya theorem, obtain the nonexistence result of solutions with singular points to the nonlinear elliptic equation. Moreover, for the same problem, the existence results of multiple solutions are proved by the mountain pass theorem.
文摘A shift sampling theory established by author (1997a) is a generalization of Fourier transform computation theory. Based on this theory, I develop an Algorithm-Error (A-E) equation of potential field transformations in the wavenumber domain, which not only gives a more flexible algorithm of potential field transformations, but also reveals the law of error of potential field transformations in the wavenumber domain. The DFT0η η(0.5, 0.5) reduction-to-pole (RTP) technique derived from the A-E equation significantly improves the resolution and accuracy of RTP anomalies at low magnetic latitudes, including the magnetic equator. The law (origin, form mechanism, and essential properties) of the edge oscillation revealed by the A-E equation points out theoretically a way of improving the effect of existing padding methods in high-pass transformations in the wavenumber domain.
文摘Studying the source of particle properties is the most important goal for scientists, so it was necessary to use the means available to us, which is physical logic to study these properties. In this paper, you will examine how the type of coordinates in which electromagnetic fields are distributed can have a role in detecting particle properties, specifically using the Riemann-Silberstein vector. Because electromagnetism it deals with electric and magnetic fields together for any electromagnetic sentence, and when we study it according to multiple coordinates and study its derivation by changing coordinates, we discover how the electromagnetic sentences are transformed from one particle to another.
基金Supported by the National Natural Science Foundation of China under Grant Nos 10371098 and 10447007, the Natural Science Foundation of Shaanxi Province (No 2005A13), and the Special Research Project of Educational Department of Shaanxi Province (No 03JK060).
文摘The concept of approximate generalized conditional symmetry (A GCS) as a generalization to both approximate Lie point symmetry and generalized conditional symmetry is introduced, and it is applied to study the perturbed nonlinear diffusion-convection equations. Complete classification of those perturbed equations which admit cerrain types of AGCSs is derived. Some approximate solutions to the resulting equations can be obtained via the AGCS and the corresponding unperturbed equations.
基金supported by National Natural Science Foundation of China (Grant No. 10771151)Scientific Research Fund of Sichuan Provincial Education Department (Grant No. 2006A068)
文摘This paper is concerned with the blow-up solutions of the Gross-Pitaevskii equation. Using the concentration compact principle and the variational characterization of the corresponding ground state, we obtain the limiting profile of blow-up solutions with critical mass in the corresponding weighted energy space. Moreover, we extend this result to small super-critical mass case by the variational methods and scaling technique.
文摘We investigate the spin and pseudospin symmetries of the Dirac equation under modified deformed Hylleraas potential via a Pekeris approximation and the Nikiforov-Uvarov technique. A tensor interaction of Coulomb form is considered and its degeneracy-removing role is discussed in detail. The solutions are reported for an arbitrary quantum number in a compact form and useful numerical data are included.