期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
小波域马铃薯典型虫害图像特征选择与识别
被引量:
20
1
作者
肖志云
刘洪
《农业机械学报》
EI
CAS
CSCD
北大核心
2017年第9期24-31,共8页
为准确、快速地识别马铃薯典型虫害,提出了一种基于小波域的马铃薯典型虫害特征提取与识别方法。该方法以自然环境下的马铃薯虫害分割图像为对象,提取小波域高斯空间模型的高频协方差阵特征值与低频低阶矩(HELM)的12个不变纹理特征、空...
为准确、快速地识别马铃薯典型虫害,提出了一种基于小波域的马铃薯典型虫害特征提取与识别方法。该方法以自然环境下的马铃薯虫害分割图像为对象,提取小波域高斯空间模型的高频协方差阵特征值与低频低阶矩(HELM)的12个不变纹理特征、空间域Hu不变矩的4个形状特征,进行支持向量机(SVM)的虫害分类识别。通过对8类典型虫害的识别,试验结果表明:在SVM识别方法下,本文HELM特征提取方法,相比传统纹理特征提取方法,在特征计算量不增加的同时,平均识别率至少提高了17个百分点;在HELM特征与Hu矩特征下,本文SVM的运行时间为0.481 s,比人工神经网络快了近2 s,平均识别率为97.5%,比人工神经网络、贝叶斯分类器识别率提高了至少6个百分点,有明显的识别优势。
展开更多
关键词
马铃薯虫害
小波域
高斯空间模型
特征选择
图像识别
支持向量机
下载PDF
职称材料
题名
小波域马铃薯典型虫害图像特征选择与识别
被引量:
20
1
作者
肖志云
刘洪
机构
内蒙古工业大学电力学院
出处
《农业机械学报》
EI
CAS
CSCD
北大核心
2017年第9期24-31,共8页
基金
国家自然科学基金项目(61661042)
内蒙古自治区自然科学基金项目(2015MS0617)
文摘
为准确、快速地识别马铃薯典型虫害,提出了一种基于小波域的马铃薯典型虫害特征提取与识别方法。该方法以自然环境下的马铃薯虫害分割图像为对象,提取小波域高斯空间模型的高频协方差阵特征值与低频低阶矩(HELM)的12个不变纹理特征、空间域Hu不变矩的4个形状特征,进行支持向量机(SVM)的虫害分类识别。通过对8类典型虫害的识别,试验结果表明:在SVM识别方法下,本文HELM特征提取方法,相比传统纹理特征提取方法,在特征计算量不增加的同时,平均识别率至少提高了17个百分点;在HELM特征与Hu矩特征下,本文SVM的运行时间为0.481 s,比人工神经网络快了近2 s,平均识别率为97.5%,比人工神经网络、贝叶斯分类器识别率提高了至少6个百分点,有明显的识别优势。
关键词
马铃薯虫害
小波域
高斯空间模型
特征选择
图像识别
支持向量机
Keywords
potato
insect
pests
wavelet
domain
Gaussian
space
model
feature
selection
imagerecognition
support
vector
machine(SVM)
分类号
TP391.41 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
小波域马铃薯典型虫害图像特征选择与识别
肖志云
刘洪
《农业机械学报》
EI
CAS
CSCD
北大核心
2017
20
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部