Potassium-ion batteries(KIBs) are a promising alternative to lithium-ion batteries owning to the abundance of potassium on Earth and the relatively low K/K+redox couple. To date, KIBs remains its infancy and the in...Potassium-ion batteries(KIBs) are a promising alternative to lithium-ion batteries owning to the abundance of potassium on Earth and the relatively low K/K+redox couple. To date, KIBs remains its infancy and the investigation of anode materials mainly focused on carbon-based materials, which deliver limited reversible capacity. Hence, it is imperative to explore alternative anode materials with high reversible capacity for KIBs. Recently, a pioneering work from Chen’s group reported a nanocomposite of Sb2S3 nanoparticles anchored on porous S,N-codoped graphene(denoted as Sb2S3-SNG) as an advanced anode material for KIBs, which exhibited remarkable enhancements of both capacity and cycling stability, highlighting the rational structure design of Sb2S3-SNG for maximum utilization of Sb2S3 nanoparticles and graphene layers for energy storage applications in high-performance KIBs.展开更多
Owing to the abundant reserves and low cost, potassium ion batteries(PIBs), as potential alternatives to lithium ion batteries(LIBs) in the field of grid-level electrical energy storage systems, have triggered extensi...Owing to the abundant reserves and low cost, potassium ion batteries(PIBs), as potential alternatives to lithium ion batteries(LIBs) in the field of grid-level electrical energy storage systems, have triggered extensive research interest recently. Taking into consideration of the cost, environmental benignity and sustainability, carbon-based materials are supposed to be a promising choice for PIB anodes. In this perspective, we summarize the carbon-based materials with various microstructures toward PIBs and try to offer comprehensive understanding the underlying mechanism of potassium(K) ion storage. In addition, several strategies including heteroatom doping, morphology engineering, defect engineering, interlayer engineering, and composition engineering are proposed to rationally design the nanostructures of the advanced carbon-based PIB anodes. Finally, we conclude the current challenges and provide our perspectives on the development of high-performance carbon materials for PIB anodes.展开更多
基金Project(52072325)supported by the National Natural Science Foundation of ChinaProject(20A486)supported by the Key Research Foundation of Education Bureau of Hunan Province,ChinaProject(1337304)supported by Hunan 2011 Collaborative Innovation Center of Chemical Engineering and Technology with Environmental Benignity and Effective Resource Utilization,China。
基金supported by the National Key Research and Development Program (No. 2016YFA0202500)
文摘Potassium-ion batteries(KIBs) are a promising alternative to lithium-ion batteries owning to the abundance of potassium on Earth and the relatively low K/K+redox couple. To date, KIBs remains its infancy and the investigation of anode materials mainly focused on carbon-based materials, which deliver limited reversible capacity. Hence, it is imperative to explore alternative anode materials with high reversible capacity for KIBs. Recently, a pioneering work from Chen’s group reported a nanocomposite of Sb2S3 nanoparticles anchored on porous S,N-codoped graphene(denoted as Sb2S3-SNG) as an advanced anode material for KIBs, which exhibited remarkable enhancements of both capacity and cycling stability, highlighting the rational structure design of Sb2S3-SNG for maximum utilization of Sb2S3 nanoparticles and graphene layers for energy storage applications in high-performance KIBs.
基金Supported by the Beijing Natural Science Foundation(JQ18005)National Key R&D Program of China(2016YFB0100201)+2 种基金National Natural Science Foundation of China(51671003)Young Thousand Talented Program,Initiative Postdocs Supporting Program(BX20180001)China Postdoctoral Science Foundation(2018M640024)
文摘Owing to the abundant reserves and low cost, potassium ion batteries(PIBs), as potential alternatives to lithium ion batteries(LIBs) in the field of grid-level electrical energy storage systems, have triggered extensive research interest recently. Taking into consideration of the cost, environmental benignity and sustainability, carbon-based materials are supposed to be a promising choice for PIB anodes. In this perspective, we summarize the carbon-based materials with various microstructures toward PIBs and try to offer comprehensive understanding the underlying mechanism of potassium(K) ion storage. In addition, several strategies including heteroatom doping, morphology engineering, defect engineering, interlayer engineering, and composition engineering are proposed to rationally design the nanostructures of the advanced carbon-based PIB anodes. Finally, we conclude the current challenges and provide our perspectives on the development of high-performance carbon materials for PIB anodes.