This work focuses on a brief discussion of new concepts of using smartphone sensors for 3D painting in virtual or augmented reality. Motivation of this research comes from the idea of using different types of sensors ...This work focuses on a brief discussion of new concepts of using smartphone sensors for 3D painting in virtual or augmented reality. Motivation of this research comes from the idea of using different types of sensors which exist in our smartphones such as accelerometer, gyroscope, magnetometer etc. to track the position for painting in virtual reality, like Google Tilt Brush, but cost effectively. Research studies till date on estimating position and localization and tracking have been thoroughly reviewed to find the appropriate algorithm which will provide accurate result with minimum drift error. Sensor fusion, Inertial Measurement Unit (IMU), MEMS inertial sensor, Kalman filter based global translational localization systems are studied. It is observed, prevailing approaches consist issues such as stability, random bias drift, noisy acceleration output, position estimation error, robustness or accuracy, cost effectiveness etc. Moreover, issues with motions that do not follow laws of physics, bandwidth, restrictive nature of assumptions, scale optimization for large space are noticed as well. Advantages of such smartphone sensor based position estimation approaches include, less memory demand, very fast operation, making them well suited for real time problems and embedded systems. Being independent of the size of the system, they can work effectively for high dimensional systems as well. Through study of these approaches it is observed, extended Kalman filter gives the highest accuracy with reduced requirement of excess hardware during tracking. It renders better and faster result when used in accelerometer sensor. With the aid of various software, error accuracy can be increased further as well.展开更多
This paper mainly analyzes a hybrid position/force control strategy and experiment of a six-cable driven parallel manipulator for a forty-meter aperture radio telescope. Through the establishments of a kinematic model...This paper mainly analyzes a hybrid position/force control strategy and experiment of a six-cable driven parallel manipulator for a forty-meter aperture radio telescope. Through the establishments of a kinematic model, a catenary model and a cable-force characteristics model, a basic method is presented based on preventing the pseudo-drag problem of a flexible cable and realizing the hybrid position/force control for a six-cable driven parallel manipulator, and a hybrid position/force control system is developed. Some specific experiments in two typical velocities for astronomical observations are carried out. Experimental results show that the tracking accuracy is related to the speed of the movement. The desired tracking accuracy of the support system is achieved through an effective hybrid position/force control strategy, the cable forces are controlled effectively, and the pseudo-drag problem of flexible cable is solved. This study establishes the foundation of achieving the harmonious movement of the six-cable driven parallel manipulator, A-B rotating platform and the Stewart fine tuninz olatform.展开更多
With the price decreasing of the pneumatic proportional valve and the high performance micro controller, the simple structure and high tracking performance pneumatic servo system demonstrates more application potentia...With the price decreasing of the pneumatic proportional valve and the high performance micro controller, the simple structure and high tracking performance pneumatic servo system demonstrates more application potential in many fields. However, most existing control methods with high tracking performance need to know the model information and to use pressure sensor. This limits the application of the pneumatic servo system. An adaptive backstepping slide mode control method is proposed for pneumatic position servo system. The proposed method designs adaptive slide mode controller using backstepping design technique. The controller parameter adaptive law is derived from Lyapunov analysis to guarantee the stability of the system. A theorem is testified to show that the state of closed-loop system is uniformly bounded, and the closed-loop system is stable. The advantages of the proposed method include that system dynamic model parameters are not required for the controller design, uncertain parameters bounds are not need, and the bulk and expensive pressure sensor is not needed as well. Experimental performance, as compared with some existing methods. results show that the designed controller can achieve better tracking展开更多
针对电液位置伺服系统由于参数不确定性、非线性、复杂时变性而导致的响应速度慢、跟踪精度低、抗干扰能力差的问题,提出一种具有更高跟踪精度及抑制抖振能力的改进PSO算法优化的自抗扰控制(Improved-PSO auto disturbance rejection co...针对电液位置伺服系统由于参数不确定性、非线性、复杂时变性而导致的响应速度慢、跟踪精度低、抗干扰能力差的问题,提出一种具有更高跟踪精度及抑制抖振能力的改进PSO算法优化的自抗扰控制(Improved-PSO auto disturbance rejection control,IPSO-ADRC)方法。首先,建立电液位置伺服系统的误差状态空间方程,采用3阶跟踪微分器、扩张状态观测器及状态误差反馈律构建自抗扰控制器模型;其次,分析惯性权重递减PSO算法存在的早熟、易陷入局部最小值等问题,综合考虑粒子迭代次数及当前粒子与全局最优粒子间距离两个因素对寻优结果的影响,提出一种改进PSO算法;最后,将改进后的PSO算法应用于所设计的自抗扰控制器中以提高控制性能。仿真及试验结果表明,相比于传统PID控制和常规自抗扰控制,采用改进PSO算法优化的自抗扰控制具有位置跟踪精度高、抗干扰能力好的优点。展开更多
文摘This work focuses on a brief discussion of new concepts of using smartphone sensors for 3D painting in virtual or augmented reality. Motivation of this research comes from the idea of using different types of sensors which exist in our smartphones such as accelerometer, gyroscope, magnetometer etc. to track the position for painting in virtual reality, like Google Tilt Brush, but cost effectively. Research studies till date on estimating position and localization and tracking have been thoroughly reviewed to find the appropriate algorithm which will provide accurate result with minimum drift error. Sensor fusion, Inertial Measurement Unit (IMU), MEMS inertial sensor, Kalman filter based global translational localization systems are studied. It is observed, prevailing approaches consist issues such as stability, random bias drift, noisy acceleration output, position estimation error, robustness or accuracy, cost effectiveness etc. Moreover, issues with motions that do not follow laws of physics, bandwidth, restrictive nature of assumptions, scale optimization for large space are noticed as well. Advantages of such smartphone sensor based position estimation approaches include, less memory demand, very fast operation, making them well suited for real time problems and embedded systems. Being independent of the size of the system, they can work effectively for high dimensional systems as well. Through study of these approaches it is observed, extended Kalman filter gives the highest accuracy with reduced requirement of excess hardware during tracking. It renders better and faster result when used in accelerometer sensor. With the aid of various software, error accuracy can be increased further as well.
基金Supported by the National Basic Research Program of China ( No. 2007CB714007) , the National Natural Science Foundation of China ( No. 50975149) , and the Important National Science & Technology Specific Projects of China (No. 2009ZX04014-.035, 2009ZX04001-042-02).
文摘This paper mainly analyzes a hybrid position/force control strategy and experiment of a six-cable driven parallel manipulator for a forty-meter aperture radio telescope. Through the establishments of a kinematic model, a catenary model and a cable-force characteristics model, a basic method is presented based on preventing the pseudo-drag problem of a flexible cable and realizing the hybrid position/force control for a six-cable driven parallel manipulator, and a hybrid position/force control system is developed. Some specific experiments in two typical velocities for astronomical observations are carried out. Experimental results show that the tracking accuracy is related to the speed of the movement. The desired tracking accuracy of the support system is achieved through an effective hybrid position/force control strategy, the cable forces are controlled effectively, and the pseudo-drag problem of flexible cable is solved. This study establishes the foundation of achieving the harmonious movement of the six-cable driven parallel manipulator, A-B rotating platform and the Stewart fine tuninz olatform.
基金Supported by National Key Scientific and Technological Project(Grant No.2010ZX04001-051-031)Key Program of National Natural Science Foundation of China((Grant No.61533014)the Innovative Research Team of Shaanxi Province,China(Grant No.2013KCT-04)
文摘With the price decreasing of the pneumatic proportional valve and the high performance micro controller, the simple structure and high tracking performance pneumatic servo system demonstrates more application potential in many fields. However, most existing control methods with high tracking performance need to know the model information and to use pressure sensor. This limits the application of the pneumatic servo system. An adaptive backstepping slide mode control method is proposed for pneumatic position servo system. The proposed method designs adaptive slide mode controller using backstepping design technique. The controller parameter adaptive law is derived from Lyapunov analysis to guarantee the stability of the system. A theorem is testified to show that the state of closed-loop system is uniformly bounded, and the closed-loop system is stable. The advantages of the proposed method include that system dynamic model parameters are not required for the controller design, uncertain parameters bounds are not need, and the bulk and expensive pressure sensor is not needed as well. Experimental performance, as compared with some existing methods. results show that the designed controller can achieve better tracking
文摘针对电液位置伺服系统由于参数不确定性、非线性、复杂时变性而导致的响应速度慢、跟踪精度低、抗干扰能力差的问题,提出一种具有更高跟踪精度及抑制抖振能力的改进PSO算法优化的自抗扰控制(Improved-PSO auto disturbance rejection control,IPSO-ADRC)方法。首先,建立电液位置伺服系统的误差状态空间方程,采用3阶跟踪微分器、扩张状态观测器及状态误差反馈律构建自抗扰控制器模型;其次,分析惯性权重递减PSO算法存在的早熟、易陷入局部最小值等问题,综合考虑粒子迭代次数及当前粒子与全局最优粒子间距离两个因素对寻优结果的影响,提出一种改进PSO算法;最后,将改进后的PSO算法应用于所设计的自抗扰控制器中以提高控制性能。仿真及试验结果表明,相比于传统PID控制和常规自抗扰控制,采用改进PSO算法优化的自抗扰控制具有位置跟踪精度高、抗干扰能力好的优点。