Image-based relocalization is a renewed interest in outdoor environments,because it is an important problem with many applications.PoseNet introduces Convolutional Neural Network(CNN)for the first time to realize the ...Image-based relocalization is a renewed interest in outdoor environments,because it is an important problem with many applications.PoseNet introduces Convolutional Neural Network(CNN)for the first time to realize the real-time camera pose solution based on a single image.In order to solve the problem of precision and robustness of PoseNet and its improved algorithms in complex environment,this paper proposes and implements a new visual relocation method based on deep convolutional neural networks(VNLSTM-PoseNet).Firstly,this method directly resizes the input image without cropping to increase the receptive field of the training image.Then,the image and the corresponding pose labels are put into the improved Long Short-Term Memory based(LSTM-based)PoseNet network for training and the network is optimized by the Nadam optimizer.Finally,the trained network is used for image localization to obtain the camera pose.Experimental results on outdoor public datasets show our VNLSTM-PoseNet can lead to drastic improvements in relocalization performance compared to existing state-of-theart CNN-based methods.展开更多
The 6D pose estimation is important for the safe take-off and landing of the aircraft using a single RGB image. Due to the large scene and large depth, the exiting pose estimation methods have unstratified performance...The 6D pose estimation is important for the safe take-off and landing of the aircraft using a single RGB image. Due to the large scene and large depth, the exiting pose estimation methods have unstratified performance on the accuracy. To achieve precise 6D pose estimation of the aircraft, an end-to-end method using an RGB image is proposed. In the proposed method, the2D and 3D information of the keypoints of the aircraft is used as the intermediate supervision,and 6D pose information of the aircraft in this intermediate information will be explored. Specifically, an off-the-shelf object detector is utilized to detect the Region of the Interest(Ro I) of the aircraft to eliminate background distractions. The 2D projection and 3D spatial information of the pre-designed keypoints of the aircraft is predicted by the keypoint coordinate estimator(Kp Net).The proposed method is trained in an end-to-end fashion. In addition, to deal with the lack of the related datasets, this paper builds the Aircraft 6D Pose dataset to train and test, which captures the take-off and landing process of three types of aircraft from 11 views. Compared with the latest Wide-Depth-Range method on this dataset, our proposed method improves the average 3D distance of model points metric(ADD) and 5° and 5 m metric by 86.8% and 30.1%, respectively. Furthermore, the proposed method gets 9.30 ms, 61.0% faster than YOLO6D with 23.86 ms.展开更多
Generally, there are two approaches for solving the problem of human pose estimation from monocular images. One is the learning-based approach, and the other is the model-based approach. The former method can estimate...Generally, there are two approaches for solving the problem of human pose estimation from monocular images. One is the learning-based approach, and the other is the model-based approach. The former method can estimate the poses rapidly but has the disadvantage of low estimation accuracy. While the latter method is able to accurately estimate the poses, its computational cost is high. In this paper, we propose a method to integrate the learning-based and model-based approaches to improve the estimation precision. In the learning-based approach, we use regression analysis to model the mapping from visual observations to human poses. In the model-based approach, a particle filter is employed on the results of regression analysis. To solve the curse of the dimensionality problem, the eigenspace of each motion is learned using Principal Component Analysis (PCA). Finally, the proposed method was estimated using the CMU Graphics Lab Motion Capture Database. The RMS error of human joint angles was 6.2 degrees using our method, an improvement of up to 0.9 degrees compared to the method without eigenspaces.展开更多
高斯过程回归(Gaussian process regression, GPR)是一种广泛应用的回归方法,可以用于解决输入输出均为多元变量的人体姿态估计问题.计算复杂度是高斯过程回归的一个重要考虑因素,而常用的降低计算复杂度的方法为稀疏表示算法.在稀疏算...高斯过程回归(Gaussian process regression, GPR)是一种广泛应用的回归方法,可以用于解决输入输出均为多元变量的人体姿态估计问题.计算复杂度是高斯过程回归的一个重要考虑因素,而常用的降低计算复杂度的方法为稀疏表示算法.在稀疏算法中,完全独立训练条件(Fully independent training conditional, FITC)法是一种较为先进的算法,多用于解决输入变量彼此之间完全独立的回归问题.另外,输入变量的噪声问题是高斯过程回归的另一个需要考虑的重要因素.对于测试的输入变量噪声,可以通过矩匹配的方法进行解决,而训练输入样本的噪声则可通过将其转换为输出噪声的方法进行解决,从而得到更高的计算精度.本文基于以上算法,提出一种基于噪声输入的稀疏高斯算法,同时将其应用于解决人体姿态估计问题.本文实验中的数据集来源于之前的众多研究人员,其输入为从视频序列中截取的图像或通过特征提取得到的图像信息,输出为三维的人体姿态.与其他算法相比,本文的算法在准确性,运行时间与算法稳定性方面均达到了令人满意的效果.展开更多
基金This work is supported by the National Key R&D Program of China[grant number 2018YFB0505400]the National Natural Science Foundation of China(NSFC)[grant num-ber 41901407]+1 种基金the LIESMARS Special Research Funding[grant number 2021]the College Students’Innovative Entrepreneurial Training Plan Program[grant number S2020634016].
文摘Image-based relocalization is a renewed interest in outdoor environments,because it is an important problem with many applications.PoseNet introduces Convolutional Neural Network(CNN)for the first time to realize the real-time camera pose solution based on a single image.In order to solve the problem of precision and robustness of PoseNet and its improved algorithms in complex environment,this paper proposes and implements a new visual relocation method based on deep convolutional neural networks(VNLSTM-PoseNet).Firstly,this method directly resizes the input image without cropping to increase the receptive field of the training image.Then,the image and the corresponding pose labels are put into the improved Long Short-Term Memory based(LSTM-based)PoseNet network for training and the network is optimized by the Nadam optimizer.Finally,the trained network is used for image localization to obtain the camera pose.Experimental results on outdoor public datasets show our VNLSTM-PoseNet can lead to drastic improvements in relocalization performance compared to existing state-of-theart CNN-based methods.
基金co-supported by the Key research and development plan project of Sichuan Province,China(No.2022YFG0153).
文摘The 6D pose estimation is important for the safe take-off and landing of the aircraft using a single RGB image. Due to the large scene and large depth, the exiting pose estimation methods have unstratified performance on the accuracy. To achieve precise 6D pose estimation of the aircraft, an end-to-end method using an RGB image is proposed. In the proposed method, the2D and 3D information of the keypoints of the aircraft is used as the intermediate supervision,and 6D pose information of the aircraft in this intermediate information will be explored. Specifically, an off-the-shelf object detector is utilized to detect the Region of the Interest(Ro I) of the aircraft to eliminate background distractions. The 2D projection and 3D spatial information of the pre-designed keypoints of the aircraft is predicted by the keypoint coordinate estimator(Kp Net).The proposed method is trained in an end-to-end fashion. In addition, to deal with the lack of the related datasets, this paper builds the Aircraft 6D Pose dataset to train and test, which captures the take-off and landing process of three types of aircraft from 11 views. Compared with the latest Wide-Depth-Range method on this dataset, our proposed method improves the average 3D distance of model points metric(ADD) and 5° and 5 m metric by 86.8% and 30.1%, respectively. Furthermore, the proposed method gets 9.30 ms, 61.0% faster than YOLO6D with 23.86 ms.
文摘Generally, there are two approaches for solving the problem of human pose estimation from monocular images. One is the learning-based approach, and the other is the model-based approach. The former method can estimate the poses rapidly but has the disadvantage of low estimation accuracy. While the latter method is able to accurately estimate the poses, its computational cost is high. In this paper, we propose a method to integrate the learning-based and model-based approaches to improve the estimation precision. In the learning-based approach, we use regression analysis to model the mapping from visual observations to human poses. In the model-based approach, a particle filter is employed on the results of regression analysis. To solve the curse of the dimensionality problem, the eigenspace of each motion is learned using Principal Component Analysis (PCA). Finally, the proposed method was estimated using the CMU Graphics Lab Motion Capture Database. The RMS error of human joint angles was 6.2 degrees using our method, an improvement of up to 0.9 degrees compared to the method without eigenspaces.
文摘高斯过程回归(Gaussian process regression, GPR)是一种广泛应用的回归方法,可以用于解决输入输出均为多元变量的人体姿态估计问题.计算复杂度是高斯过程回归的一个重要考虑因素,而常用的降低计算复杂度的方法为稀疏表示算法.在稀疏算法中,完全独立训练条件(Fully independent training conditional, FITC)法是一种较为先进的算法,多用于解决输入变量彼此之间完全独立的回归问题.另外,输入变量的噪声问题是高斯过程回归的另一个需要考虑的重要因素.对于测试的输入变量噪声,可以通过矩匹配的方法进行解决,而训练输入样本的噪声则可通过将其转换为输出噪声的方法进行解决,从而得到更高的计算精度.本文基于以上算法,提出一种基于噪声输入的稀疏高斯算法,同时将其应用于解决人体姿态估计问题.本文实验中的数据集来源于之前的众多研究人员,其输入为从视频序列中截取的图像或通过特征提取得到的图像信息,输出为三维的人体姿态.与其他算法相比,本文的算法在准确性,运行时间与算法稳定性方面均达到了令人满意的效果.