During the last two decades,porous coordination polymers(PCPs),usually called as metal-organic frameworks(MOFs),have been developed rapidly due to their versatile structural diversities and potential physical and chem...During the last two decades,porous coordination polymers(PCPs),usually called as metal-organic frameworks(MOFs),have been developed rapidly due to their versatile structural diversities and potential physical and chemical functions.This article provides a short review of recent advances in the design and constructions of porous coordination polymers based on three planar rigid ligands,including imidazole-4,5-dicarboxlate(H3IDC),1H-tetrazole(HTz),as well as 1H-tetrazole-5-carboxylate(H2Tzc).Their preparations,crystal structures,and desirable properties have been reviewed.展开更多
Porous polymers have been recently recog- nized as one of the most important precursors for fabrication of heteroatom-doped porous carbons due to the intrinsic porous structure, easy available heteroatom- containing m...Porous polymers have been recently recog- nized as one of the most important precursors for fabrication of heteroatom-doped porous carbons due to the intrinsic porous structure, easy available heteroatom- containing monomers and versatile polymerization meth- ods. However, the heteroatom elements in as-produced porous carbons are quite relied on monomers. So far, the manipulating of heteroatom in porous polymer derived porous carbons are still very rare and challenge. In this work, a sulfur-enriched porous polymer, which was prepared from a diacetylene-linked porous polymer, was used as precursor to prepare S-doped and/or N-doped porous carbons under nitrogen and/or ammonia atmo- spheres. Remarkably, S content can sharply decrease from 36.3% to 0.05% after ammonia treatment. The N content and specific surface area of as-fabricated porous carbons can reach up to 1.32% and 1508 m^2·g^-1, respectively. As the electrode materials for electrical double-layer capacitors, as-fabricated porous carbons exhibit high specific capacitance of up to 431.6 F·g^-1 at 5 mW·s^-1 and excellent cycling stability of 99.74% capacitance retention after 3000 cycles at 100 mV·s^-1. Furthermore, as the electro- chemical catalysts for oxygen reduction reaction, as- fabricated porous carbons presented ultralow half-wave- potential of 0.78 V versus RHE. This work not only offers a new strategy for manipulating S and N doping features for the porous carbons derived from S-containing porous polymers, but also paves the way for the structure- performance interrelationship study of heteroatoms co- doped porous carbon for energy applications.展开更多
As nanomedicine-based clinical strategies have continued to develop,the possibility of combining chemotherapy and singlet oxygen-dependent photodynamic therapy(PDT)to treat pancreatic cancer(PaC)has emerged as a viabl...As nanomedicine-based clinical strategies have continued to develop,the possibility of combining chemotherapy and singlet oxygen-dependent photodynamic therapy(PDT)to treat pancreatic cancer(PaC)has emerged as a viable therapeutic modality.The efficacy of such an approach,however,is likely to be constrained by the mechanisms of drug release and tumor oxygen levels.In the present study,we developed an Fe(Ⅲ)-complexed porous coordination network(PCN)which we then used to encapsulate PTX(PCN-Fe(Ⅲ)-PTX)nanoparticles(NPs)in order to treat PaC via a combination of chemotherapy and PDT.The resultant NPs were able to release drug in response to both laser irradiation and pH changes to promote drug accumulation within tumors.Furthermore,through a Fe(Ⅲ)-based Fenton-like reaction these NPs were able to convert H2O2 in the tumor site to O2,thereby regulating local hypoxic conditions and enhancing the efficacy of PDT approaches.Also these NPs were suitable for use as a T1-MRI weighted contrast agent,making them viable for monitoring therapeutic efficacy upon treatment.Our results in both cell line and animal models of PaC suggest that these NPs represent an ideal agent for mediating effective MRI-guided chemotherapy-PDT,giving them great promise for the clinical treatment of PaC.展开更多
Porous organic polymers(POPs)have attracted great attention in past decades.Although diverse functional POPs have been developed,multistimuli-responsive POPs with excellent aggregate-state luminescence together with g...Porous organic polymers(POPs)have attracted great attention in past decades.Although diverse functional POPs have been developed,multistimuli-responsive POPs with excellent aggregate-state luminescence together with good chiroptical properties have rarely been reported.Herein,two pairs of Salen-type enantiomeric PoPs with multistimuli-responsive luminescence and chiral features were designed and synthesized by facile polycondensation reactions between polyfunctional aggregation-induced emission luminogen(AlEgen)-containing salicylaldehyde derivatives and chiral diamines.With Salen units in polymer backbones as tetradentate ligands,a series of POP-metal complexes were further prepared.The obtained POPs and metal complexes show good porosity,high thermal stability,and obvious circular dichroism signals.Moreover,benefiting from the coexistence of AlEgen and Salen units in polymer structures,these POPs exhibit excellent luminescence performance in aggregate states and tunable fluorescence behaviors in response to external stimuli of Zn^(2+)ion,mechanical forces,organic solvent,and acids.Due to the dynamic feature of Schiff base C=N bonds,the present POPs can efficiently undergo hydrolysis reactions under strong acidic conditions to reproduce the AlEgencontaining monomers,and such an acid-induced degradation process can be directly visualized and dynamically monitored via fluorescence variation.These properties collectively make the POPs candidate materials for applications in heterogeneous asymmetric catalysis,fluorescence sensing,biomedicine,etc.展开更多
This review presents a comprehensive examination of fully conjugated covalent organic frameworks(COFs),which constitute an emerging class of porous materials with immense potential for diverse applications.This articl...This review presents a comprehensive examination of fully conjugated covalent organic frameworks(COFs),which constitute an emerging class of porous materials with immense potential for diverse applications.This article focuses on diversified fully conjugated COFs,including sp2 carbon-carbon linkages,pyrazine linkages,benzobisoxazole linkages,dioxin linkages,β-aminoalkenone linkages,etc.The synthesis techniques and structural attributes of these COFs are expounded upon in great detail,along with their potential applications in various fields.The review thus provides a valuable resource for researchers keen on delving into the synthesis and applications of fully conjugated COFs,thereby highlighting their potential for developing novel functional materials with distinctive properties.展开更多
Development of new metal-free heterogeneous catalysts has long been the focus of intense research interest.The integration of multifunctional monomers into the skeletons of porous organic polymers(POPs)provides an eff...Development of new metal-free heterogeneous catalysts has long been the focus of intense research interest.The integration of multifunctional monomers into the skeletons of porous organic polymers(POPs)provides an efficient pathway to achieve this goal.Herein,we rationally designed and successfully prepared a new Troger’s base(TB)-derived POPs by insertion of pillar[5]arene macrocycle as a positively auxiliary group.Combined the both merits of pillar[5]arene macrocycle and TB moiety,the as-prepared polymer was further explored as an effective metal-free heterogeneous catalyst and exhibited promoted catalytic performance in Knoevenagel condensation and CO_(2)conversion.This work provides a new strategy to fabricate metal-free heterogeneous catalysts based on macrocyclic POPs.展开更多
A monolithic column-based mass spectrometry(MS)analysis kit was prepared for whole blood analysis with MS.The kit is disposable and can be used for purification,storage,transportation and direct analysis of whole bloo...A monolithic column-based mass spectrometry(MS)analysis kit was prepared for whole blood analysis with MS.The kit is disposable and can be used for purification,storage,transportation and direct analysis of whole blood.The kit mainly consists of a capillary for quantitative microsampling,a cation exchange monolithic column for purification and storage,and a syringe for loading sample.This kit is very friendly to various users that one can easily siphon the blood in the kit followed by rapid clean-up.We established a quantitative method using the kit with a limit detection as low as 0.33 nmol/L,and achieved more than five orders of magnitude enhancement in sensitivity compared to direct nanoelectrospray ionization MS analysis.The column can avoid analyte exposure to environment,which helps the storage of the sample for laboratory analysis.The relative standard deviation of immediate blood analysis and storage blood analysis within 10 d was less than 10%.This method has been successfully applied to the quantitative analysis of procainamide hydrochloride in 2μL rat blood.These results indicate that this disposable kit does have the potential to achieve highly sensitive quantitative MS analysis in biological samples,which is expected to become a cost-effective and powerful tool for in vitro diagnostics.展开更多
Porous organic polymers(POPs)have attracted extensive interest due to their structural diversity and predesigned functionality.However,the majority of POPs are synthesized as insoluble and unprocessable powders,which ...Porous organic polymers(POPs)have attracted extensive interest due to their structural diversity and predesigned functionality.However,the majority of POPs are synthesized as insoluble and unprocessable powders,which greatly impede their advanced applications because of limited mass transport and inadaptation for device integration.Herein,we report a controlled synthetic strategy of macroscopic POP gels by a cation-stabilized colloidal formation mechanism,which is widely adaptable to a large variety of tetra-/tri-amino build blocks for the synthesis of Tröger’s base-linked POP gels,aerogels,and ionic gels.The POP gels combined the integrated advantages of hierarchically porous structures and tailorable mechanical stiffness,whereas they could load substantial amounts of phosphoric acids and construct unimpeded transport pathways for proton conduction,exhibiting unprecedented proton conductivity at subzero temperatures.Our strategy offers a new solution to the intractable processing issues of POPs toward device applications with cutting-edge performances.展开更多
The development of reliable catalysts with both excellent activity and recyclability for carbon dioxide(CO_(2))hydrogenation is challenging.Herein,a ternary hybrid heterogeneous catalyst,involving mononuclear Ru compl...The development of reliable catalysts with both excellent activity and recyclability for carbon dioxide(CO_(2))hydrogenation is challenging.Herein,a ternary hybrid heterogeneous catalyst,involving mononuclear Ru complex,N,P-containing porous organic polymers(POPs),and mesoporous hollow carbon spheres(Ru^(3+)-POPs@MHCS)is reported for CO_(2)hydrogenation to formate.Based on comprehensive structural analyses,we demonstrated that Ru^(3+)-POPs were successfully immobilized within MHCS.The optimized Ru^(3+)-0.5POPs@MHCS catalyst,which was obtained with about 5 wt.%Ru^(3+)and 0.5 mmol POPs polymers confined into 0.3 g MHCS,exhibited high catalytic activity for CO_(2)hydrogenation to formate(turnover number(TON)>1,200 for 24 h under mild reaction conditions(4.0 MPa,120℃))and improved durability,compared to Ru^(3+)catalysts without POPs polymers(Ru^(3+)-MHCS)and unencapsulated MHCS(Ru^(3+)-0.5POPs)catalysts.The improved catalytic performance is attributed to the high surface area and large pore volume of MHCS which favors dispersion and stabilization of Ru^(3+)-POPs.Furthermore,the MHCS and POPs showed high CO_(2)adsorption ability.Ru^(3+)-POPs encapsulated into MHCS reduces the activation energy barrier for CO_(2)hydrogenation to formate.展开更多
Volatile organic compounds(VOCs)with high toxicity and carcinogenicity are emitted from kinds of industries,which endanger human health and the environment.Adsorption is a promising method for the treatment of VOCs du...Volatile organic compounds(VOCs)with high toxicity and carcinogenicity are emitted from kinds of industries,which endanger human health and the environment.Adsorption is a promising method for the treatment of VOCs due to its low cost and high efficiency.In recent years,activated carbons,zeolites,and mesoporous materials are widely used to remove VOCs because of their high specific surface area and abundant porosity.However,the hydrophilic nature and low desorption rate of those materials limit their commercial application.Furthermore,the adsorption capacities of VOCs still need to be improved.Porous organic polymers(POPs)with extremely high porosity,structural diversity,and hydrophobic have been considered as one of the most promising candidates for VOCs adsorption.This review generalized the superiority of POPs for VOCs adsorption compared to other porous materials and summarized the studies of VOCs adsorption on different types of POPs.Moreover,the mechanism of competitive adsorption between water and VOCs on the POPs was discussed.Finally,a concise outlook for utilizing POPs for VOCs adsorption was discussed,noting areas in which further work is needed to develop the next-generation POPs for practical applications.展开更多
文摘During the last two decades,porous coordination polymers(PCPs),usually called as metal-organic frameworks(MOFs),have been developed rapidly due to their versatile structural diversities and potential physical and chemical functions.This article provides a short review of recent advances in the design and constructions of porous coordination polymers based on three planar rigid ligands,including imidazole-4,5-dicarboxlate(H3IDC),1H-tetrazole(HTz),as well as 1H-tetrazole-5-carboxylate(H2Tzc).Their preparations,crystal structures,and desirable properties have been reviewed.
文摘Porous polymers have been recently recog- nized as one of the most important precursors for fabrication of heteroatom-doped porous carbons due to the intrinsic porous structure, easy available heteroatom- containing monomers and versatile polymerization meth- ods. However, the heteroatom elements in as-produced porous carbons are quite relied on monomers. So far, the manipulating of heteroatom in porous polymer derived porous carbons are still very rare and challenge. In this work, a sulfur-enriched porous polymer, which was prepared from a diacetylene-linked porous polymer, was used as precursor to prepare S-doped and/or N-doped porous carbons under nitrogen and/or ammonia atmo- spheres. Remarkably, S content can sharply decrease from 36.3% to 0.05% after ammonia treatment. The N content and specific surface area of as-fabricated porous carbons can reach up to 1.32% and 1508 m^2·g^-1, respectively. As the electrode materials for electrical double-layer capacitors, as-fabricated porous carbons exhibit high specific capacitance of up to 431.6 F·g^-1 at 5 mW·s^-1 and excellent cycling stability of 99.74% capacitance retention after 3000 cycles at 100 mV·s^-1. Furthermore, as the electro- chemical catalysts for oxygen reduction reaction, as- fabricated porous carbons presented ultralow half-wave- potential of 0.78 V versus RHE. This work not only offers a new strategy for manipulating S and N doping features for the porous carbons derived from S-containing porous polymers, but also paves the way for the structure- performance interrelationship study of heteroatoms co- doped porous carbon for energy applications.
基金supported by the National Natural Science Foundation of China(Nos.81527803,81420108018,U1432114,81550110258,8161101589,81650410654 and 31971292)National Key R&D Program of China(Nos.2018YFC0115900 and 2018YFC0910601)+5 种基金Key Breakthrough Program of Chinese Academy of Sciences(No.KGZD-EW-T06)Zhejiang Science and Technology Project(No.2019C03077)the Hundred Talents Program of Chinese Academy of Sciences(No.2010-735)Youth Natural Science Fund Project of Zhejiang Province(No.LQ19H180004)Natural Science Fund Project of Ningbo City(No.2018A610380)Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province(No.2019E10020)。
文摘As nanomedicine-based clinical strategies have continued to develop,the possibility of combining chemotherapy and singlet oxygen-dependent photodynamic therapy(PDT)to treat pancreatic cancer(PaC)has emerged as a viable therapeutic modality.The efficacy of such an approach,however,is likely to be constrained by the mechanisms of drug release and tumor oxygen levels.In the present study,we developed an Fe(Ⅲ)-complexed porous coordination network(PCN)which we then used to encapsulate PTX(PCN-Fe(Ⅲ)-PTX)nanoparticles(NPs)in order to treat PaC via a combination of chemotherapy and PDT.The resultant NPs were able to release drug in response to both laser irradiation and pH changes to promote drug accumulation within tumors.Furthermore,through a Fe(Ⅲ)-based Fenton-like reaction these NPs were able to convert H2O2 in the tumor site to O2,thereby regulating local hypoxic conditions and enhancing the efficacy of PDT approaches.Also these NPs were suitable for use as a T1-MRI weighted contrast agent,making them viable for monitoring therapeutic efficacy upon treatment.Our results in both cell line and animal models of PaC suggest that these NPs represent an ideal agent for mediating effective MRI-guided chemotherapy-PDT,giving them great promise for the clinical treatment of PaC.
基金the National Natural Science Foundation of China(22271197)the Ministry of Science and Technology of China(2021YFA1501600)+5 种基金the Guangdong Basic and Applied Basic Research Foundation(2023A1515011578)the Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates(2019B030301003)the Shenzhen Science and Technology Program(RCYX20221008092924059,JCYJ20220531102601003)the Open Fund of Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates(2023B1212060003)the 2035 Research Excellence Program of Shenzhen University(2023c001)the Innovation and Technology Commission(ITC-CNERC14SCO1).
文摘Porous organic polymers(POPs)have attracted great attention in past decades.Although diverse functional POPs have been developed,multistimuli-responsive POPs with excellent aggregate-state luminescence together with good chiroptical properties have rarely been reported.Herein,two pairs of Salen-type enantiomeric PoPs with multistimuli-responsive luminescence and chiral features were designed and synthesized by facile polycondensation reactions between polyfunctional aggregation-induced emission luminogen(AlEgen)-containing salicylaldehyde derivatives and chiral diamines.With Salen units in polymer backbones as tetradentate ligands,a series of POP-metal complexes were further prepared.The obtained POPs and metal complexes show good porosity,high thermal stability,and obvious circular dichroism signals.Moreover,benefiting from the coexistence of AlEgen and Salen units in polymer structures,these POPs exhibit excellent luminescence performance in aggregate states and tunable fluorescence behaviors in response to external stimuli of Zn^(2+)ion,mechanical forces,organic solvent,and acids.Due to the dynamic feature of Schiff base C=N bonds,the present POPs can efficiently undergo hydrolysis reactions under strong acidic conditions to reproduce the AlEgencontaining monomers,and such an acid-induced degradation process can be directly visualized and dynamically monitored via fluorescence variation.These properties collectively make the POPs candidate materials for applications in heterogeneous asymmetric catalysis,fluorescence sensing,biomedicine,etc.
基金supported by the National Natural Science Foundation of China(22175101,51972185)the Natural Science Foundation of Shandong Province(ZZR2020ZD38).
文摘This review presents a comprehensive examination of fully conjugated covalent organic frameworks(COFs),which constitute an emerging class of porous materials with immense potential for diverse applications.This article focuses on diversified fully conjugated COFs,including sp2 carbon-carbon linkages,pyrazine linkages,benzobisoxazole linkages,dioxin linkages,β-aminoalkenone linkages,etc.The synthesis techniques and structural attributes of these COFs are expounded upon in great detail,along with their potential applications in various fields.The review thus provides a valuable resource for researchers keen on delving into the synthesis and applications of fully conjugated COFs,thereby highlighting their potential for developing novel functional materials with distinctive properties.
基金the National Natural Science Foundation of China(No.U1808210)the Natural Science Foundation of Liaoning province(No.2019-MS-046).
文摘Development of new metal-free heterogeneous catalysts has long been the focus of intense research interest.The integration of multifunctional monomers into the skeletons of porous organic polymers(POPs)provides an efficient pathway to achieve this goal.Herein,we rationally designed and successfully prepared a new Troger’s base(TB)-derived POPs by insertion of pillar[5]arene macrocycle as a positively auxiliary group.Combined the both merits of pillar[5]arene macrocycle and TB moiety,the as-prepared polymer was further explored as an effective metal-free heterogeneous catalyst and exhibited promoted catalytic performance in Knoevenagel condensation and CO_(2)conversion.This work provides a new strategy to fabricate metal-free heterogeneous catalysts based on macrocyclic POPs.
基金financially supported by the National Natural Science Foundation of China(No.22104112)the startup foundation of Wuhan University(No.600460076).
文摘A monolithic column-based mass spectrometry(MS)analysis kit was prepared for whole blood analysis with MS.The kit is disposable and can be used for purification,storage,transportation and direct analysis of whole blood.The kit mainly consists of a capillary for quantitative microsampling,a cation exchange monolithic column for purification and storage,and a syringe for loading sample.This kit is very friendly to various users that one can easily siphon the blood in the kit followed by rapid clean-up.We established a quantitative method using the kit with a limit detection as low as 0.33 nmol/L,and achieved more than five orders of magnitude enhancement in sensitivity compared to direct nanoelectrospray ionization MS analysis.The column can avoid analyte exposure to environment,which helps the storage of the sample for laboratory analysis.The relative standard deviation of immediate blood analysis and storage blood analysis within 10 d was less than 10%.This method has been successfully applied to the quantitative analysis of procainamide hydrochloride in 2μL rat blood.These results indicate that this disposable kit does have the potential to achieve highly sensitive quantitative MS analysis in biological samples,which is expected to become a cost-effective and powerful tool for in vitro diagnostics.
基金supported by the National Natural Science Foundation of China (grant nos.21975078,21971074,22241501,and 92261117)the Fundamental Research Funds for the Central Universitiesthe start-up foundation of Sichuan University.
文摘Porous organic polymers(POPs)have attracted extensive interest due to their structural diversity and predesigned functionality.However,the majority of POPs are synthesized as insoluble and unprocessable powders,which greatly impede their advanced applications because of limited mass transport and inadaptation for device integration.Herein,we report a controlled synthetic strategy of macroscopic POP gels by a cation-stabilized colloidal formation mechanism,which is widely adaptable to a large variety of tetra-/tri-amino build blocks for the synthesis of Tröger’s base-linked POP gels,aerogels,and ionic gels.The POP gels combined the integrated advantages of hierarchically porous structures and tailorable mechanical stiffness,whereas they could load substantial amounts of phosphoric acids and construct unimpeded transport pathways for proton conduction,exhibiting unprecedented proton conductivity at subzero temperatures.Our strategy offers a new solution to the intractable processing issues of POPs toward device applications with cutting-edge performances.
基金supported by JSPS KAKENHI(Nos.18K14056 and 19H00838)JST,PRESTO(No.JPMJPR19T3)+3 种基金Japan.A part of this work was supported by the cooperative research program of“Network Joint Research Center for Materials and Devices”(No.20211069).support of the International Joint Research Promotion Program at Osaka University.G.X.Y.gratefully acknowledges the financial support from the China Scholarship Council(No.201808310132)Y.K.,K.M.,and H.Y.thank the Elements Strategy Initiative of MEXT(No.JPMXP0112101003)Japan.The synchrotron radiation experiments for XAFS measurement were performed at the BL01B1 beamline in SPring-8 with approval from JASRI(Nos.2019B1114 and 2020A1064).
文摘The development of reliable catalysts with both excellent activity and recyclability for carbon dioxide(CO_(2))hydrogenation is challenging.Herein,a ternary hybrid heterogeneous catalyst,involving mononuclear Ru complex,N,P-containing porous organic polymers(POPs),and mesoporous hollow carbon spheres(Ru^(3+)-POPs@MHCS)is reported for CO_(2)hydrogenation to formate.Based on comprehensive structural analyses,we demonstrated that Ru^(3+)-POPs were successfully immobilized within MHCS.The optimized Ru^(3+)-0.5POPs@MHCS catalyst,which was obtained with about 5 wt.%Ru^(3+)and 0.5 mmol POPs polymers confined into 0.3 g MHCS,exhibited high catalytic activity for CO_(2)hydrogenation to formate(turnover number(TON)>1,200 for 24 h under mild reaction conditions(4.0 MPa,120℃))and improved durability,compared to Ru^(3+)catalysts without POPs polymers(Ru^(3+)-MHCS)and unencapsulated MHCS(Ru^(3+)-0.5POPs)catalysts.The improved catalytic performance is attributed to the high surface area and large pore volume of MHCS which favors dispersion and stabilization of Ru^(3+)-POPs.Furthermore,the MHCS and POPs showed high CO_(2)adsorption ability.Ru^(3+)-POPs encapsulated into MHCS reduces the activation energy barrier for CO_(2)hydrogenation to formate.
基金supported by the National Key R&D Pro-gram of China(Nos.2019YFC1904100,2019YFC1904102,2019YFC1903902,and 2016YFC0205300)the National En-gineering Laboratory for Mobile Source Emission Control Technology of China(No.NELMS2017A03)+3 种基金the Natural Na-tional Science Foundation of China(Nos.21503144,21690083)Tianjin Research Program of Ecological Environmental Treat-ment(Nos.18ZXSZSF00210,18ZXSZSF00060)the Tianjin Research Program of Application Foundation and Advanced Technique(No.16JCQNJC05400)Major Science and Tech-nology Project for Ecological Environment Management in Tianjin(No.18ZXSZSF00210)。
文摘Volatile organic compounds(VOCs)with high toxicity and carcinogenicity are emitted from kinds of industries,which endanger human health and the environment.Adsorption is a promising method for the treatment of VOCs due to its low cost and high efficiency.In recent years,activated carbons,zeolites,and mesoporous materials are widely used to remove VOCs because of their high specific surface area and abundant porosity.However,the hydrophilic nature and low desorption rate of those materials limit their commercial application.Furthermore,the adsorption capacities of VOCs still need to be improved.Porous organic polymers(POPs)with extremely high porosity,structural diversity,and hydrophobic have been considered as one of the most promising candidates for VOCs adsorption.This review generalized the superiority of POPs for VOCs adsorption compared to other porous materials and summarized the studies of VOCs adsorption on different types of POPs.Moreover,the mechanism of competitive adsorption between water and VOCs on the POPs was discussed.Finally,a concise outlook for utilizing POPs for VOCs adsorption was discussed,noting areas in which further work is needed to develop the next-generation POPs for practical applications.