Based on one type of practical Biot's equation and the dynamic-stiffness matrices ofa poroelastic soil layer and half-space, Green's functions were derived for unitformly distributed loads acting on an inclined line...Based on one type of practical Biot's equation and the dynamic-stiffness matrices ofa poroelastic soil layer and half-space, Green's functions were derived for unitformly distributed loads acting on an inclined line in a poroelastie layered site. This analysis overcomes significant problems in wave scattering due to local soil conditions and dynamic soil-structure interaction. The Green's functions can be reduced to the case of an elastic layered site developed by Wolf in 1985. Parametric studies are then carried out through two example problems.展开更多
A study on dynamic response of transversely isotropic saturated poroelastic media under a circular non-axisymmetrical harmonic source has been presented by Huang Yi et al. using the technique of Fourier expansion and ...A study on dynamic response of transversely isotropic saturated poroelastic media under a circular non-axisymmetrical harmonic source has been presented by Huang Yi et al. using the technique of Fourier expansion and Hankel transform. However, the method may not always be valid. The work is extended to the general case being in the rectangular coordinate. The purpose is to study the 3-d dynamic response of transversely isotropic saturated soils under a general source distributing in arbitrary rectangular zoon on the medium surface. Based on Biot's theory for fluid- saturated porous media, the 3-d wave motion equations in rectangular coordinate for transversely isotropic saturated poroelastic media were transformed into the two uncoupling governing differential equations of 6-order and 2-order respectively by means of the displacement functions. Then, using the technique of double Fourier transform, the governing differential equations were easily solved. Integral solutions of soil skeleton displacements and pore pressure as well as the total stresses for poroelastic media were obtained. Furthermore, a systematic study on half-space problem in saturated soils was performed. Integral solutions for surface displacements under the general harmonic source distributing on arbitrary surface zone, considering both case of drained surface and undrained surface, were presented.展开更多
Diffraction of plane P waves around an alluvial valley of arbitrary shape in poroelastic half-space is investigated by using an indirect boundary integral equation method. Based on the Green's fimctions of line sourc...Diffraction of plane P waves around an alluvial valley of arbitrary shape in poroelastic half-space is investigated by using an indirect boundary integral equation method. Based on the Green's fimctions of line source in poroelastic half-space, the scattered waves are constructed using the fictitious wave sources close to the interface of the valley and the density of ficti- tious wave sources are determined by boundary conditions. The precision of the method is verified by the satisfaction extent of boundary conditions, and the comparison between the degenerated solutions and available results in single-phase case. Finally, the nature of diffraction of plane P waves around an alluvial valley in poroelastic half-space is investigated in detail through nu- merical examples.展开更多
The dynamic response of a poroelastic stratum subjected to moving load is studied. The governing dynamic equations for poroelastic medium are solved by using Fourier transform. The general solutions for the stresses a...The dynamic response of a poroelastic stratum subjected to moving load is studied. The governing dynamic equations for poroelastic medium are solved by using Fourier transform. The general solutions for the stresses and displacements in the transformed domain are established. Based on the general solutions, with the consideration of boundary conditions, the final expressions of stresses and displacements in physical domain are put forward for the three-dimensional single-layer medium. Some numerical solutions for the stresses, displacements and pore fluid pressure are presented and reveal that the response of a poroelastic stratum varies obviously with the moving velocity.展开更多
Torsional vibrations of coated hollow poroelastic spheres are studied employing Biot’s theory of wave propagation in poroelastic solid. The dilatations of solid and liquid media are zero, therefore the frequency equa...Torsional vibrations of coated hollow poroelastic spheres are studied employing Biot’s theory of wave propagation in poroelastic solid. The dilatations of solid and liquid media are zero, therefore the frequency equation of torsional vibrations is same both for a permeable and an impermeable surface. The coated poroelastic sphere consists of an inner hollow poroelastic sphere bounded by and bonded to a sphere made of distinct poroelastic material. The inner sphere is designated as core and outer sphere as casing. Core and casing are bonded at the curved surfaces. The inner and outer boundaries of the coated hollow poroelastic sphere are free from stress and at the interface of core and casing the displacement and stresses are continuous. It is assumed that the each material of coated sphere is homogeneous and isotropic. The frequency equation of torsional vibrations of a coated poroelastic hollow sphere is obtained when the material of the core vanishes. Also a coated poroelastic solid sphere is obtained as the limiting case of the frequency equation of coated hollow poroelastic sphere when the inner radius of core approaches to zero. Non-dimensional frequency as a function of ratio of thickness of core to that of inner radius of core is determined and analyzed. It is observed that the frequency and dispersion increase with the increase of the thickness of the coating.展开更多
基金National Natural Science Foundation of China Under Grant No.50378063
文摘Based on one type of practical Biot's equation and the dynamic-stiffness matrices ofa poroelastic soil layer and half-space, Green's functions were derived for unitformly distributed loads acting on an inclined line in a poroelastie layered site. This analysis overcomes significant problems in wave scattering due to local soil conditions and dynamic soil-structure interaction. The Green's functions can be reduced to the case of an elastic layered site developed by Wolf in 1985. Parametric studies are then carried out through two example problems.
文摘A study on dynamic response of transversely isotropic saturated poroelastic media under a circular non-axisymmetrical harmonic source has been presented by Huang Yi et al. using the technique of Fourier expansion and Hankel transform. However, the method may not always be valid. The work is extended to the general case being in the rectangular coordinate. The purpose is to study the 3-d dynamic response of transversely isotropic saturated soils under a general source distributing in arbitrary rectangular zoon on the medium surface. Based on Biot's theory for fluid- saturated porous media, the 3-d wave motion equations in rectangular coordinate for transversely isotropic saturated poroelastic media were transformed into the two uncoupling governing differential equations of 6-order and 2-order respectively by means of the displacement functions. Then, using the technique of double Fourier transform, the governing differential equations were easily solved. Integral solutions of soil skeleton displacements and pore pressure as well as the total stresses for poroelastic media were obtained. Furthermore, a systematic study on half-space problem in saturated soils was performed. Integral solutions for surface displacements under the general harmonic source distributing on arbitrary surface zone, considering both case of drained surface and undrained surface, were presented.
基金supported by National Natural Science Foundation of China (50978183)
文摘Diffraction of plane P waves around an alluvial valley of arbitrary shape in poroelastic half-space is investigated by using an indirect boundary integral equation method. Based on the Green's fimctions of line source in poroelastic half-space, the scattered waves are constructed using the fictitious wave sources close to the interface of the valley and the density of ficti- tious wave sources are determined by boundary conditions. The precision of the method is verified by the satisfaction extent of boundary conditions, and the comparison between the degenerated solutions and available results in single-phase case. Finally, the nature of diffraction of plane P waves around an alluvial valley in poroelastic half-space is investigated in detail through nu- merical examples.
基金the National Natural Science Foundation of China (Grant No. 10372073)
文摘The dynamic response of a poroelastic stratum subjected to moving load is studied. The governing dynamic equations for poroelastic medium are solved by using Fourier transform. The general solutions for the stresses and displacements in the transformed domain are established. Based on the general solutions, with the consideration of boundary conditions, the final expressions of stresses and displacements in physical domain are put forward for the three-dimensional single-layer medium. Some numerical solutions for the stresses, displacements and pore fluid pressure are presented and reveal that the response of a poroelastic stratum varies obviously with the moving velocity.
文摘Torsional vibrations of coated hollow poroelastic spheres are studied employing Biot’s theory of wave propagation in poroelastic solid. The dilatations of solid and liquid media are zero, therefore the frequency equation of torsional vibrations is same both for a permeable and an impermeable surface. The coated poroelastic sphere consists of an inner hollow poroelastic sphere bounded by and bonded to a sphere made of distinct poroelastic material. The inner sphere is designated as core and outer sphere as casing. Core and casing are bonded at the curved surfaces. The inner and outer boundaries of the coated hollow poroelastic sphere are free from stress and at the interface of core and casing the displacement and stresses are continuous. It is assumed that the each material of coated sphere is homogeneous and isotropic. The frequency equation of torsional vibrations of a coated poroelastic hollow sphere is obtained when the material of the core vanishes. Also a coated poroelastic solid sphere is obtained as the limiting case of the frequency equation of coated hollow poroelastic sphere when the inner radius of core approaches to zero. Non-dimensional frequency as a function of ratio of thickness of core to that of inner radius of core is determined and analyzed. It is observed that the frequency and dispersion increase with the increase of the thickness of the coating.