Suppose that function f(z) is transcendental and meromorphic in the plane. The aim of this work is to investigate the conditions in which differential monomials f(z)f(k)(z) takes any non-zero finite complex nu...Suppose that function f(z) is transcendental and meromorphic in the plane. The aim of this work is to investigate the conditions in which differential monomials f(z)f(k)(z) takes any non-zero finite complex number infinitely times and to consider the normality relation to differential monomials f(z)f(k) (z).展开更多
In this paper, by using multivariate divided differences to approximate the partial derivative and superposition, we extend the multivariate quasi-interpolation scheme based on dimension-splitting technique which can ...In this paper, by using multivariate divided differences to approximate the partial derivative and superposition, we extend the multivariate quasi-interpolation scheme based on dimension-splitting technique which can reproduce linear polynomials to the scheme quadric polynomials. Furthermore, we give the approximation error of the modified scheme. Our multivariate multiquadric quasi-interpolation scheme only requires information of lo- cation points but not that of the derivatives of approximated function. Finally, numerical experiments demonstrate that the approximation rate of our scheme is significantly im- proved which is consistent with the theoretical results.展开更多
In this paper,we study normal families of holomorphic function concerning shared a polynomial.Let F be a family of holomorphic functions in a domain D,k(2)be a positive integer,K be a positive number andα(z)be a poly...In this paper,we study normal families of holomorphic function concerning shared a polynomial.Let F be a family of holomorphic functions in a domain D,k(2)be a positive integer,K be a positive number andα(z)be a polynomial of degree p(p 1).For each f∈F and z∈D,if f and f sharedα(z)CM and|f(k)(z)|K whenever f(z)-α(z)=0 in D, then F is normal in D.展开更多
In this paper we present a mean value theorem derived from Flett's mean value theorem. It turns out that cubic polynomials have the midpoint of the interval as their mean value point.To answer what class of functi...In this paper we present a mean value theorem derived from Flett's mean value theorem. It turns out that cubic polynomials have the midpoint of the interval as their mean value point.To answer what class of functions have this property,we consider a functional equation associated with this mean value theorem.This equation is then solved in a general setting on abelian groups.展开更多
In this paper, we propose a new infeasible interior-point algorithm with full NesterovTodd (NT) steps for semidefinite programming (SDP). The main iteration consists of a feasibility step and several centrality steps....In this paper, we propose a new infeasible interior-point algorithm with full NesterovTodd (NT) steps for semidefinite programming (SDP). The main iteration consists of a feasibility step and several centrality steps. We used a specific kernel function to induce the feasibility step. The analysis is more simplified. The iteration bound coincides with the currently best known bound for infeasible interior-point methods.展开更多
This paper proposes a new full Nesterov-Todd(NT) step infeasible interior-point algorithm for semidefinite programming. Our algorithm uses a specific kernel function, which is adopted by Liu and Sun, to deduce the fea...This paper proposes a new full Nesterov-Todd(NT) step infeasible interior-point algorithm for semidefinite programming. Our algorithm uses a specific kernel function, which is adopted by Liu and Sun, to deduce the feasibility step. By using the step, it is remarkable that in each iteration of the algorithm it needs only one full-NT step, and can obtain an iterate approximate to the central path. Moreover, it is proved that the iterative bound corresponds with the known optimal one for semidefinite optimization problems.展开更多
Polynomial functions (in particular, permutation polynomials) play an important role in the design of modern cryptosystem. In this note the problem of counting the number of polynomial functions over finite commutat...Polynomial functions (in particular, permutation polynomials) play an important role in the design of modern cryptosystem. In this note the problem of counting the number of polynomial functions over finite commutative rings is discussed. Let A be a general finite commutative local ring. Under a certain condition, the counting formula of the number of polynomial functions over A is obtained. Before this paper, some results over special finite commutative rings were obtained by many authors.展开更多
This paper deals with some uniqueness problems of entire functions concerning differential polynomials that share one value with finite weight in a different form. We obtain some theorems which generalize some results...This paper deals with some uniqueness problems of entire functions concerning differential polynomials that share one value with finite weight in a different form. We obtain some theorems which generalize some results given by Banerjee, Fang and Hua, Zhang and Lin, Zhang, etc.展开更多
In this paper we prove some interesting extensions and generalizations of Enestrom- Kakeya Theorem concerning the location of the zeros of a polynomial in a complex plane. We also obtain some zero-free regions for a c...In this paper we prove some interesting extensions and generalizations of Enestrom- Kakeya Theorem concerning the location of the zeros of a polynomial in a complex plane. We also obtain some zero-free regions for a class of related analytic functions. Our results not only contain some known results as a special case but also a variety of interesting results can be deduced in a unified way by various choices of the parameters.展开更多
We investigate a generalized homogeneous Hahn polynomial in some detail. This polynomial includes as special cases the homogeneous Hahn polynomial and the homogeneous Rogers-Szeg o polynomial.A generating function, wh...We investigate a generalized homogeneous Hahn polynomial in some detail. This polynomial includes as special cases the homogeneous Hahn polynomial and the homogeneous Rogers-Szeg o polynomial.A generating function, which contains a known generating function as a special case, is given. We also give a finite series generating function. Some results on the asymptotic expansion for this polynomial are derived.Certain results on zeros are also obtained. We deduce several results on zeros of certain entire functions involving this generalized Hahn polynomial. As results, one of Zhang(2017)’s results as well as others is obtained. Finally,we derive several general results on q-congruences of the generalized q-Apéry polynomials, from which two qcongruences involving the generalized homogeneous Hahn polynomial are deduced.展开更多
In various Hilbert spaces of analytic functions on the unit disk,we charac-terize when a function has optimal polynomial approximants given by truncations of a single power series or,equivalently,when the approximants...In various Hilbert spaces of analytic functions on the unit disk,we charac-terize when a function has optimal polynomial approximants given by truncations of a single power series or,equivalently,when the approximants stabilize.We also intro-duce a generalized notion of optimal approximant and use this to explicitly compute orthogonal projections of 1 onto certain shift invariant subspaces.展开更多
基金Foundation item: Supported by the National Natural Science Foundation of Education Department of Sichuan Province(2002A031) Supported by the "11.5" Research and Study Programs of SWUST(06zx2116) Supported by the National Natural Science Foundation of China(10271122)
文摘Suppose that function f(z) is transcendental and meromorphic in the plane. The aim of this work is to investigate the conditions in which differential monomials f(z)f(k)(z) takes any non-zero finite complex number infinitely times and to consider the normality relation to differential monomials f(z)f(k) (z).
文摘In this paper, by using multivariate divided differences to approximate the partial derivative and superposition, we extend the multivariate quasi-interpolation scheme based on dimension-splitting technique which can reproduce linear polynomials to the scheme quadric polynomials. Furthermore, we give the approximation error of the modified scheme. Our multivariate multiquadric quasi-interpolation scheme only requires information of lo- cation points but not that of the derivatives of approximated function. Finally, numerical experiments demonstrate that the approximation rate of our scheme is significantly im- proved which is consistent with the theoretical results.
基金Supported by the Scientific Research Starting Foundation for Master and Ph.D.of Honghe University(XSS08012)Supported by Scientific Research Fund of Yunnan Provincial Education Department of China Grant(09C0206)
文摘In this paper,we study normal families of holomorphic function concerning shared a polynomial.Let F be a family of holomorphic functions in a domain D,k(2)be a positive integer,K be a positive number andα(z)be a polynomial of degree p(p 1).For each f∈F and z∈D,if f and f sharedα(z)CM and|f(k)(z)|K whenever f(z)-α(z)=0 in D, then F is normal in D.
文摘In this paper we present a mean value theorem derived from Flett's mean value theorem. It turns out that cubic polynomials have the midpoint of the interval as their mean value point.To answer what class of functions have this property,we consider a functional equation associated with this mean value theorem.This equation is then solved in a general setting on abelian groups.
文摘In this paper, we propose a new infeasible interior-point algorithm with full NesterovTodd (NT) steps for semidefinite programming (SDP). The main iteration consists of a feasibility step and several centrality steps. We used a specific kernel function to induce the feasibility step. The analysis is more simplified. The iteration bound coincides with the currently best known bound for infeasible interior-point methods.
基金Sponsored by the National Natural Science Foundation of China(Grant No.11461021)the Natural Science Basic Research Plan in Shaanxi Province of China(Grant No.2017JM1014)Scientific Research Project of Hezhou University(Grant Nos.2014YBZK06 and 2016HZXYSX03)
文摘This paper proposes a new full Nesterov-Todd(NT) step infeasible interior-point algorithm for semidefinite programming. Our algorithm uses a specific kernel function, which is adopted by Liu and Sun, to deduce the feasibility step. By using the step, it is remarkable that in each iteration of the algorithm it needs only one full-NT step, and can obtain an iterate approximate to the central path. Moreover, it is proved that the iterative bound corresponds with the known optimal one for semidefinite optimization problems.
基金Supported by the Anhui Provincial Key Natural Science Foundation of Universities and Colleges (Grant No.KJ2007A127ZC)
文摘Polynomial functions (in particular, permutation polynomials) play an important role in the design of modern cryptosystem. In this note the problem of counting the number of polynomial functions over finite commutative rings is discussed. Let A be a general finite commutative local ring. Under a certain condition, the counting formula of the number of polynomial functions over A is obtained. Before this paper, some results over special finite commutative rings were obtained by many authors.
基金Supported by the Youth Foundation of Education Department of Jiangxi Province (Grant Nos.GJJ10050GJJ10223)
文摘This paper deals with some uniqueness problems of entire functions concerning differential polynomials that share one value with finite weight in a different form. We obtain some theorems which generalize some results given by Banerjee, Fang and Hua, Zhang and Lin, Zhang, etc.
文摘In this paper we prove some interesting extensions and generalizations of Enestrom- Kakeya Theorem concerning the location of the zeros of a polynomial in a complex plane. We also obtain some zero-free regions for a class of related analytic functions. Our results not only contain some known results as a special case but also a variety of interesting results can be deduced in a unified way by various choices of the parameters.
基金supported by National Natural Science Foundation of China(Grant No.11801451)the Natural Science Foundation of Hunan Province(Grant No.2020JJ5682).
文摘We investigate a generalized homogeneous Hahn polynomial in some detail. This polynomial includes as special cases the homogeneous Hahn polynomial and the homogeneous Rogers-Szeg o polynomial.A generating function, which contains a known generating function as a special case, is given. We also give a finite series generating function. Some results on the asymptotic expansion for this polynomial are derived.Certain results on zeros are also obtained. We deduce several results on zeros of certain entire functions involving this generalized Hahn polynomial. As results, one of Zhang(2017)’s results as well as others is obtained. Finally,we derive several general results on q-congruences of the generalized q-Apéry polynomials, from which two qcongruences involving the generalized homogeneous Hahn polynomial are deduced.
文摘In various Hilbert spaces of analytic functions on the unit disk,we charac-terize when a function has optimal polynomial approximants given by truncations of a single power series or,equivalently,when the approximants stabilize.We also intro-duce a generalized notion of optimal approximant and use this to explicitly compute orthogonal projections of 1 onto certain shift invariant subspaces.