以二苯甲酮-4,4′-二甲酸(BDA)为共聚单体,通过缩合聚合制备了一系列具有不同组成的聚(二苯甲酮-4,4′-二甲酸/己二酸癸二醇酯)(PDBA)高分子光引发剂。核磁共振氢谱(1 H NMR)及差示扫描量热分析(DSC)结果显示,当BDA摩尔含量不大于30%时,...以二苯甲酮-4,4′-二甲酸(BDA)为共聚单体,通过缩合聚合制备了一系列具有不同组成的聚(二苯甲酮-4,4′-二甲酸/己二酸癸二醇酯)(PDBA)高分子光引发剂。核磁共振氢谱(1 H NMR)及差示扫描量热分析(DSC)结果显示,当BDA摩尔含量不大于30%时,PDBA的熔点随着BDA含量的增加而降低,且其值介于45.6~77.4℃之间。核磁共振氢谱、红外吸收光谱(FTIR)和凝胶渗透色谱(GPC)证明产物为主链含二苯甲酮基这一光引发基团共聚酯。紫外吸收光谱显示,BDA摩尔含量20%的共聚物PDBA-20与二苯甲酮(BP)具有类似的紫外吸收行为,而其迁移率显著低于BP。在引发聚乙二醇二丙烯酸酯(PEGDA)紫外固化和超高分子量聚乙烯(UHMWPE)紫外交联时,PDBA-20表现出与BP基本相似的引发活性。展开更多
To make photoinitiators (PI) to be polymeric and water-soluble is an effective approach to develop the high efficient photoinitiator systems with low-migration, low-toxic and environment-friend. We developed a serie...To make photoinitiators (PI) to be polymeric and water-soluble is an effective approach to develop the high efficient photoinitiator systems with low-migration, low-toxic and environment-friend. We developed a series of novel amphiphilic hyperhranched polymeric photoinitiators (hPEA-TXs, and hPEA- BPs) by introducing thioxanthone (TX) or benzophenone (BP) moieties into the periphery of the hyperbranched poly(ether amine) (hPEA) comprised of the hydrophilic poly(ethylene oxide) (PEO) short chain and coinitiator amine moieties in the backbone. Compared with their water-soluble low-molecular weight analogues, the resulting hyperbranched polymeric photoinitiators hPEA101-TX, hPEA211-TX, hPEA101-BP and hPEA211-BP could be dissolved very well not only in many organic systems including acrylate monomers, but also in water with high solubility of 10 wt~. The photopolymerization kinetics of water-soluble monomer acrylamide (AM) and three hydrophobic multifunctional acrylate monomers initiated by these hyperbranched photoinitiators were investigated in detail by photo-differential scanning calorimetric (photo-DSC). Both hPEA-TXs and hPEA-BPs can initiate photopolymerization of AM as efficiently as their low-molecular weight analogues MGA-TX and MGA-BP, respectively. The final double bond conversion (DBC) of oil-soluble monomer hexanediol diacrylate (HDDA) photoinitiated by these hyperbranched photoinitiators can reach as high as 99%. Especially for photopolymerization of multifunctional monomers initiated by these hyperbranched polymeric photoinitiators, the final DBC of trimethylolpropane triacrylate (TMPTA) and pentaerythritol tetraacrylate (PETTA) can reach 80% and 60%, respectively, which is much higher than that of low-molecular weight photoinitiators.展开更多
文摘以二苯甲酮-4,4′-二甲酸(BDA)为共聚单体,通过缩合聚合制备了一系列具有不同组成的聚(二苯甲酮-4,4′-二甲酸/己二酸癸二醇酯)(PDBA)高分子光引发剂。核磁共振氢谱(1 H NMR)及差示扫描量热分析(DSC)结果显示,当BDA摩尔含量不大于30%时,PDBA的熔点随着BDA含量的增加而降低,且其值介于45.6~77.4℃之间。核磁共振氢谱、红外吸收光谱(FTIR)和凝胶渗透色谱(GPC)证明产物为主链含二苯甲酮基这一光引发基团共聚酯。紫外吸收光谱显示,BDA摩尔含量20%的共聚物PDBA-20与二苯甲酮(BP)具有类似的紫外吸收行为,而其迁移率显著低于BP。在引发聚乙二醇二丙烯酸酯(PEGDA)紫外固化和超高分子量聚乙烯(UHMWPE)紫外交联时,PDBA-20表现出与BP基本相似的引发活性。
基金the National Natural Science Foundation of China(Nos. 21522403,51373098)Education Commission of Shanghai Municipal Government(No.15SG13)IFPM2016B002 of Shanghai jiao Tong University & Affiliated Sixth People's Hospital South Campus for their financial support
文摘To make photoinitiators (PI) to be polymeric and water-soluble is an effective approach to develop the high efficient photoinitiator systems with low-migration, low-toxic and environment-friend. We developed a series of novel amphiphilic hyperhranched polymeric photoinitiators (hPEA-TXs, and hPEA- BPs) by introducing thioxanthone (TX) or benzophenone (BP) moieties into the periphery of the hyperbranched poly(ether amine) (hPEA) comprised of the hydrophilic poly(ethylene oxide) (PEO) short chain and coinitiator amine moieties in the backbone. Compared with their water-soluble low-molecular weight analogues, the resulting hyperbranched polymeric photoinitiators hPEA101-TX, hPEA211-TX, hPEA101-BP and hPEA211-BP could be dissolved very well not only in many organic systems including acrylate monomers, but also in water with high solubility of 10 wt~. The photopolymerization kinetics of water-soluble monomer acrylamide (AM) and three hydrophobic multifunctional acrylate monomers initiated by these hyperbranched photoinitiators were investigated in detail by photo-differential scanning calorimetric (photo-DSC). Both hPEA-TXs and hPEA-BPs can initiate photopolymerization of AM as efficiently as their low-molecular weight analogues MGA-TX and MGA-BP, respectively. The final double bond conversion (DBC) of oil-soluble monomer hexanediol diacrylate (HDDA) photoinitiated by these hyperbranched photoinitiators can reach as high as 99%. Especially for photopolymerization of multifunctional monomers initiated by these hyperbranched polymeric photoinitiators, the final DBC of trimethylolpropane triacrylate (TMPTA) and pentaerythritol tetraacrylate (PETTA) can reach 80% and 60%, respectively, which is much higher than that of low-molecular weight photoinitiators.