Thermo-responsive poly(N-isopropylacrylamide-co-styrene)[P(NIPAM-co-St)] hydrogel microspheres were prepared by surfactant-free emulsion polymerization. The effects of initiator dosage, stirring rate, phase ratio and ...Thermo-responsive poly(N-isopropylacrylamide-co-styrene)[P(NIPAM-co-St)] hydrogel microspheres were prepared by surfactant-free emulsion polymerization. The effects of initiator dosage, stirring rate, phase ratio and polymerization time on particle size and monodispersity were investigated.The results showed that, with increasing initiator dosage,mean diameter increased slightly to a maximum, and then decreased drastically; meanwhile, the monodispersity of the particles became a little better at first, and then became worse significantly. With increasing stirring rate,particle diameter decreased while the monodispersity became worse. When the amount of phase rate increased, the mean diameter became larger simply, whereas the monodispersity became worse firstly and then became better again. As the polymerization proceeded, the mean diameter of the particles hardly changed, and the monodispersity became better gradually. The microspheres prepared under the optimum experimental conditions showed satisfactory particle size and monodispersity.展开更多
Polyamide 6 underwent an efficient depolymerization in hydrophilic ionic liquids under microwave irradiation at 300C. The depolymerization completed within 60 min. Caprolactam was readily separated by simple extractio...Polyamide 6 underwent an efficient depolymerization in hydrophilic ionic liquids under microwave irradiation at 300C. The depolymerization completed within 60 min. Caprolactam was readily separated by simple extraction procedure and the ionic liquids were recovered and reused for several times. Addition of catalytic amounts of DMAP(N,N-dimethylaminopyridine) promoted the depolymerization effectively.The present improved procedure provides a method to avoid direct distillation procedure, which consumes energy for the separation of caprolactam from ionic liquids. Although some contamination of ionic liquids was observed, the present procedure provides a new possibility for the use of ionic liquids for plastic chemical recycling from the viewpoint of development of an energy-saving methodology. Use of solubility switchable ionic liquids is also examined to explore a possibility for better separation although depolymerization did not work well.展开更多
基金国家自然科学基金 (No 2 0 2 0 60 19)教育部留学回国人员科研启动基金 (No [2 0 0 2 ] 2 47)资助项目~~
文摘Thermo-responsive poly(N-isopropylacrylamide-co-styrene)[P(NIPAM-co-St)] hydrogel microspheres were prepared by surfactant-free emulsion polymerization. The effects of initiator dosage, stirring rate, phase ratio and polymerization time on particle size and monodispersity were investigated.The results showed that, with increasing initiator dosage,mean diameter increased slightly to a maximum, and then decreased drastically; meanwhile, the monodispersity of the particles became a little better at first, and then became worse significantly. With increasing stirring rate,particle diameter decreased while the monodispersity became worse. When the amount of phase rate increased, the mean diameter became larger simply, whereas the monodispersity became worse firstly and then became better again. As the polymerization proceeded, the mean diameter of the particles hardly changed, and the monodispersity became better gradually. The microspheres prepared under the optimum experimental conditions showed satisfactory particle size and monodispersity.
基金partially supported by the Grant-inAid for Scientific Research A(24241023)Grant-in-Aid for Challenging Exploratory Research(17K19139)from the Japan Society for the Promotion of Science
文摘Polyamide 6 underwent an efficient depolymerization in hydrophilic ionic liquids under microwave irradiation at 300C. The depolymerization completed within 60 min. Caprolactam was readily separated by simple extraction procedure and the ionic liquids were recovered and reused for several times. Addition of catalytic amounts of DMAP(N,N-dimethylaminopyridine) promoted the depolymerization effectively.The present improved procedure provides a method to avoid direct distillation procedure, which consumes energy for the separation of caprolactam from ionic liquids. Although some contamination of ionic liquids was observed, the present procedure provides a new possibility for the use of ionic liquids for plastic chemical recycling from the viewpoint of development of an energy-saving methodology. Use of solubility switchable ionic liquids is also examined to explore a possibility for better separation although depolymerization did not work well.