Objective: To prepare and characterize poly lactic-co-glycolic acid(PLGA) nanoparticles loaded with soluble leishmanial antigen or autoclaved leishmanial antigen and explore in vitro and in vivo immunogenicity of anti...Objective: To prepare and characterize poly lactic-co-glycolic acid(PLGA) nanoparticles loaded with soluble leishmanial antigen or autoclaved leishmanial antigen and explore in vitro and in vivo immunogenicity of antigen encapsulated nanoparticles. Methods: Water/oil/water double emulsion technique was employed to synthesize PLGA nanoparticles, and scanning electron microscopy, Fourier transform infrared spectroscopy and Zeta-potential measurements were used to identify the characteristics of nanoparticles. Cytotoxicity of synthetized nanoparticles on J774 macrophage were investigated by MTT assays. To determine the in vitro immunostimulatory efficacies of nanoparticles, griess reaction and ELISA was used to measure the amounts of NO and cytokines. During the in vivo analysis, Balb/c mice were immunized with vaccine formulations, and protective properties of nanoparticles were measured by Leishman Donovan unit in the liver following the infection. Cytokine levels in spleens of mice were determined by ELISA. Results: MTT assay showed that neither soluble leishmanial antigen nor autoclaved leishmanial antigen encapsulated nanoparticles showed cytotoxicity against J774 macrophage cells. Contrary to free antigens, both autoclaved leishmanial antigen-nanoparticle and soluble leishmanial antigen-nanoparticle formulations led to a 10 and 16-fold increase in NO amounts by macrophages, respectively. Leishman Donovan unit calculations revealed that soluble leishmanial antigen-nanoparticles and autoclaved leishmanial antigen-nanoparticles yielded 52% and 64% protection against visceral leishmaniasis in mouse models. Besides, in vitro and in vivo tests demonstrated that by increasing IFN-γ and IL-12 levels and inhibiting IL-4 and IL-10 secretions, autoclaved leishmanial antigen-nanoparticles and soluble leishmanial antigennanoparticles triggered Th1 immune response. Conclusions: Both autoclaved leishmanial antigen-nanoparticles and soluble leishmanial antigen-nanoparticles formulations provide exceptional in vitro and in vi展开更多
Anisotropic surface topography is known to induce the contact guidance of cells, and facile and biocompatible approaches of the physical modification of the pertinent matrix surfaces are thus meaningful for biomateria...Anisotropic surface topography is known to induce the contact guidance of cells, and facile and biocompatible approaches of the physical modification of the pertinent matrix surfaces are thus meaningful for biomaterials. Herein, we put forward a sugar-fiber imprinting technique to generate microgrooves on hydrophobic polymers demonstrated by the poly(lactic-eo-glycolic acid) (PLGA) films. Microgrooves were conveniently generated after removing sugar fibers simply by water. The resulting locally anisotropic microgrooves were confirmed to elongate the cells cultured on the surface.展开更多
基金supported by Scientific and Technological Research Council of Turkey(TUBITAK,Grant No.213S148)
文摘Objective: To prepare and characterize poly lactic-co-glycolic acid(PLGA) nanoparticles loaded with soluble leishmanial antigen or autoclaved leishmanial antigen and explore in vitro and in vivo immunogenicity of antigen encapsulated nanoparticles. Methods: Water/oil/water double emulsion technique was employed to synthesize PLGA nanoparticles, and scanning electron microscopy, Fourier transform infrared spectroscopy and Zeta-potential measurements were used to identify the characteristics of nanoparticles. Cytotoxicity of synthetized nanoparticles on J774 macrophage were investigated by MTT assays. To determine the in vitro immunostimulatory efficacies of nanoparticles, griess reaction and ELISA was used to measure the amounts of NO and cytokines. During the in vivo analysis, Balb/c mice were immunized with vaccine formulations, and protective properties of nanoparticles were measured by Leishman Donovan unit in the liver following the infection. Cytokine levels in spleens of mice were determined by ELISA. Results: MTT assay showed that neither soluble leishmanial antigen nor autoclaved leishmanial antigen encapsulated nanoparticles showed cytotoxicity against J774 macrophage cells. Contrary to free antigens, both autoclaved leishmanial antigen-nanoparticle and soluble leishmanial antigen-nanoparticle formulations led to a 10 and 16-fold increase in NO amounts by macrophages, respectively. Leishman Donovan unit calculations revealed that soluble leishmanial antigen-nanoparticles and autoclaved leishmanial antigen-nanoparticles yielded 52% and 64% protection against visceral leishmaniasis in mouse models. Besides, in vitro and in vivo tests demonstrated that by increasing IFN-γ and IL-12 levels and inhibiting IL-4 and IL-10 secretions, autoclaved leishmanial antigen-nanoparticles and soluble leishmanial antigennanoparticles triggered Th1 immune response. Conclusions: Both autoclaved leishmanial antigen-nanoparticles and soluble leishmanial antigen-nanoparticles formulations provide exceptional in vitro and in vi
文摘Anisotropic surface topography is known to induce the contact guidance of cells, and facile and biocompatible approaches of the physical modification of the pertinent matrix surfaces are thus meaningful for biomaterials. Herein, we put forward a sugar-fiber imprinting technique to generate microgrooves on hydrophobic polymers demonstrated by the poly(lactic-eo-glycolic acid) (PLGA) films. Microgrooves were conveniently generated after removing sugar fibers simply by water. The resulting locally anisotropic microgrooves were confirmed to elongate the cells cultured on the surface.