Maintenance of cellular homeostasis and genome integrity is a critical responsibility of DNA double-strand break(DSB)signaling.P53-binding protein 1(53BP1)plays a critical role in coordinating the DSB repair pathway c...Maintenance of cellular homeostasis and genome integrity is a critical responsibility of DNA double-strand break(DSB)signaling.P53-binding protein 1(53BP1)plays a critical role in coordinating the DSB repair pathway choice and promotes the non-homologous end-joining(NHEJ)-mediated DSB repair pathway that rejoins DSB ends.New insights have been gained into a basic molecular mechanism that is involved in 53BP1 recruitment to the DNA lesion and how 53BP1 then recruits the DNA break-responsive effectors that promote NHEJ-mediated DSB repair while inhibiting homologous recombination(HR)signaling.This review focuses on the up-and downstream pathways of 53BP1 and how 53BP1 promotes NHEJ-mediated DSB repair,which in turn promotes the sensitivity of poly(ADP-ribose)polymerase inhibitor(PARPi)in BRCA1-deficient cancers and consequently provides an avenue for improving cancer therapy strategies.展开更多
文摘Maintenance of cellular homeostasis and genome integrity is a critical responsibility of DNA double-strand break(DSB)signaling.P53-binding protein 1(53BP1)plays a critical role in coordinating the DSB repair pathway choice and promotes the non-homologous end-joining(NHEJ)-mediated DSB repair pathway that rejoins DSB ends.New insights have been gained into a basic molecular mechanism that is involved in 53BP1 recruitment to the DNA lesion and how 53BP1 then recruits the DNA break-responsive effectors that promote NHEJ-mediated DSB repair while inhibiting homologous recombination(HR)signaling.This review focuses on the up-and downstream pathways of 53BP1 and how 53BP1 promotes NHEJ-mediated DSB repair,which in turn promotes the sensitivity of poly(ADP-ribose)polymerase inhibitor(PARPi)in BRCA1-deficient cancers and consequently provides an avenue for improving cancer therapy strategies.