In this research, a surface imprinting strategy has been adopted in protein imprinting. Bovine hemo-globin surface-imprinted polystyrene (PS) nanoparticles with magnetic susceptibility have been syn-thesized through m...In this research, a surface imprinting strategy has been adopted in protein imprinting. Bovine hemo-globin surface-imprinted polystyrene (PS) nanoparticles with magnetic susceptibility have been syn-thesized through multistage core-shell polymerization system using 3-aminophenylboronic acid (APBA) as functional and cross-linking monomers. Superparamagnetic molecularly imprinted polystyrene nanospheres with poly(APBA) thin films have been synthesized and used for the first time for protein molecular imprinting in an aqueous solution. The magnetic susceptibility is imparted through the successful encapsulation of Fe3O4 nanoparticles. The morphology, adsorption, and recognition prop-erties of superparamagnetic molecularly imprinted polymers (MIPs) have been investigated using transmission electron microscopy, X-ray diffraction, thermogravimetric analysis, and vibrating sample magnetometer. Rebinding experimental results show that poly(APBA) MIPs-coated superparamagnetic PS nanoparticles have high adsorption capacity for template protein bovine hemoglobin and compara-tively low nonspecific adsorption. The imprinted superparamagnetic nanoparticles could easily reach the adsorption equilibrium and achieve magnetic separation in an external magnetic field, thus avoid-ing some problems of the bulk polymer.展开更多
基金Supported by the National High-Tech Research & Development Program of China (Grant No. 2007AA10Z432)the National Basic Research Program (Grant No. 2007CB914100)+1 种基金the National Natural Science Foundation of China (Grant Nos. 20675040 & 20875050)the Natural Science Foundation of Tianjin (Grant No. 07JCYBJC00500)
文摘In this research, a surface imprinting strategy has been adopted in protein imprinting. Bovine hemo-globin surface-imprinted polystyrene (PS) nanoparticles with magnetic susceptibility have been syn-thesized through multistage core-shell polymerization system using 3-aminophenylboronic acid (APBA) as functional and cross-linking monomers. Superparamagnetic molecularly imprinted polystyrene nanospheres with poly(APBA) thin films have been synthesized and used for the first time for protein molecular imprinting in an aqueous solution. The magnetic susceptibility is imparted through the successful encapsulation of Fe3O4 nanoparticles. The morphology, adsorption, and recognition prop-erties of superparamagnetic molecularly imprinted polymers (MIPs) have been investigated using transmission electron microscopy, X-ray diffraction, thermogravimetric analysis, and vibrating sample magnetometer. Rebinding experimental results show that poly(APBA) MIPs-coated superparamagnetic PS nanoparticles have high adsorption capacity for template protein bovine hemoglobin and compara-tively low nonspecific adsorption. The imprinted superparamagnetic nanoparticles could easily reach the adsorption equilibrium and achieve magnetic separation in an external magnetic field, thus avoid-ing some problems of the bulk polymer.