基于环境空气质量监测数据,本文分析了2022年6月14—18日高温热浪期间江苏省臭氧污染过程的时空变化特征,并结合天气形势、WRF-CMAQ模拟和典型城市大气超级站挥发性有机物(VOCs)在线监测数据进行了成因分析。结果表明:高温热浪期间,江苏...基于环境空气质量监测数据,本文分析了2022年6月14—18日高温热浪期间江苏省臭氧污染过程的时空变化特征,并结合天气形势、WRF-CMAQ模拟和典型城市大气超级站挥发性有机物(VOCs)在线监测数据进行了成因分析。结果表明:高温热浪期间,江苏省13个地级城市臭氧污染超标率达96.9%,中度污染超标率为27.6%,臭氧日最大8 h(MDA8 O 3)峰值质量浓度高达260.0μg·m^(-3)。南通市、无锡市、苏州市3个典型城市臭氧质量浓度的日变化特征显示,07—13时臭氧质量浓度增长率在27.9%~46.7%,多个时段净增量超过40.0μg·m^(-3)。利用WRF-CMAQ模型对污染过程进行了数值模拟、过程分析和溯源分析。结果显示,典型城市白天小时平均光化学贡献在24.5~33.0μg·m^(-3)之间,稳定高值的光化学贡献,叠加持续稳定或突发的传输贡献,导致此次高温热浪下臭氧质量浓度爆发式升高,出现峰值污染。在偏南风的影响下,省外污染源来自浙江省贡献最高,在13.9%~33.8%,其中无锡市和苏州市受浙江省外源影响较大。此外南通市大气超级站VOCs在线监测结果显示,臭氧污染期间逐日VOCs体积分数在45.5×10^(-9)~83.6×10^(-9)之间,整体处于高值水平,臭氧生成潜势(OFPs)贡献排名前十的物种以烯烃和芳香烃物质为主。展开更多
The process analysis is performed for August and December, 2002 using the process analysis tool embedded in the Community Multiscale Air Quality (CMAQ) modeling system at a fine horizontal grid resolution of 4-km over...The process analysis is performed for August and December, 2002 using the process analysis tool embedded in the Community Multiscale Air Quality (CMAQ) modeling system at a fine horizontal grid resolution of 4-km over an area in the southeastern U.S. that is centered at North Carolina. The objectives are to qunatify the contributions of major atmospheric processes to the formation of major air pollutants and provide the insights into photochemistry that governs the fate of these pollutants at a fine grid scale. The results show that emissions provide a dominant source for gases including ammonia (NH3), nitric oxide (NO), nitrogen dioxide (NO2), and sulfur dioxide (SO2) and Particulate Matter (PM) species including fine PM (PM2.5) and its composition such as sulfate, elemental carbon, primary organic aerosol, and other inorganic fine PM in both months. While transport acts as a major sink for NH3, NO, and SO2 at most sites and PM2.5 and most of PM2.5 composition at urban sites, it provides a major source for nitric acid (HNO3) and ozone (O3) at most sites in both months, and secondary PM species in August and most PM species in December at rural and remote sites. Gas-phase chemistry serves as a source for NO2 and HNO3 but a sink for O3 at urban and suburban sites and for NO and SO2 at all sites. PM processes contribute to the formation of PM2.5 and nitrate () at the urban and suburban sites and secondary organic aerosol (SOA) at most sites in December and ammonium () in both months. They reduce formation at most sites in August and at rural and remote sites in December and the formation of PM2.5 and SOA at most sites in August. Dry deposition is an important sink for all these species in both months. The total odd oxygen (Ox) production and the total hydroxyl radical (OH) reacted are much higher at urban and suburban sites than at rural sites. Significant amounts of OH are consumed by biogenic volatile organic compounds (BVOCs) in the rural and remote areas and a combination of anthropogenic VOCs (AVOCs) and BVOCs展开更多
A multiple-pollutant version of CMAQ v4.6 (i.e., CMAQ-MP) has been applied by the US EPA over continental US in 2002 to demonstrate the model’s capability in reproducing the long-term trends of ambient criteria and h...A multiple-pollutant version of CMAQ v4.6 (i.e., CMAQ-MP) has been applied by the US EPA over continental US in 2002 to demonstrate the model’s capability in reproducing the long-term trends of ambient criteria and hazardous air pollutants (CAPs and HAPs, respectively) in support of regulatory analysis for air quality management. In this study, a comprehensive model performance evaluation for the full year of 2002 is performed for the first time for CMAQ-MP using the surface networks and satellite measurements. CMAQ-MP shows a comparable and improved performance for most CAPs species as compared to an older version of CMAQ that did not treat HAPs and used older versions of national emission inventories. CMAQ-MP generally gives better performance for CAPs than for HAPs. Max 8-h ozone (O3) mixing ratios are well reproduced in the O3season. The seasonal-mean performance is fairly good for fine particulate matter (PM2.5), sulfate (SO42-), and mercury (Hg) wet deposition and worse for other CAPs and HAPs species. The reasons for the model biases may be attributed to uncertainties in emissions for some species (e.g., ammonia (NH3), elemental carbon (EC), primary organic aerosol (POA), HAPs), gas/aerosol chemistry treatments (e.g., secondary or- ganic aerosol formation, meteorology (e.g., overestimate in summer precipitation), measurements (e.g., NO3-), and the use of a coarse grid resolution. CMAQ cannot well reproduce spatial and seasonal variations of column variables except for nitrogen dioxide (NO2) and the ratio of column mass of HCHO/NO2. Possible reasons include inaccurate seasonal allocation or underestimation of emissions, inaccurate BCONs at higher altitudes, lack of model treatments such as mineral dust or plume-in-grid process, and limitations and errors in satellite data retrievals. The process analysis results show that in addition to transport, gas chemistry or aerosol/emissions play the most important roles for O3 or PM2.5, respectively. For most HAPs, emissions are important sources and cloud process展开更多
文摘基于环境空气质量监测数据,本文分析了2022年6月14—18日高温热浪期间江苏省臭氧污染过程的时空变化特征,并结合天气形势、WRF-CMAQ模拟和典型城市大气超级站挥发性有机物(VOCs)在线监测数据进行了成因分析。结果表明:高温热浪期间,江苏省13个地级城市臭氧污染超标率达96.9%,中度污染超标率为27.6%,臭氧日最大8 h(MDA8 O 3)峰值质量浓度高达260.0μg·m^(-3)。南通市、无锡市、苏州市3个典型城市臭氧质量浓度的日变化特征显示,07—13时臭氧质量浓度增长率在27.9%~46.7%,多个时段净增量超过40.0μg·m^(-3)。利用WRF-CMAQ模型对污染过程进行了数值模拟、过程分析和溯源分析。结果显示,典型城市白天小时平均光化学贡献在24.5~33.0μg·m^(-3)之间,稳定高值的光化学贡献,叠加持续稳定或突发的传输贡献,导致此次高温热浪下臭氧质量浓度爆发式升高,出现峰值污染。在偏南风的影响下,省外污染源来自浙江省贡献最高,在13.9%~33.8%,其中无锡市和苏州市受浙江省外源影响较大。此外南通市大气超级站VOCs在线监测结果显示,臭氧污染期间逐日VOCs体积分数在45.5×10^(-9)~83.6×10^(-9)之间,整体处于高值水平,臭氧生成潜势(OFPs)贡献排名前十的物种以烯烃和芳香烃物质为主。
文摘The process analysis is performed for August and December, 2002 using the process analysis tool embedded in the Community Multiscale Air Quality (CMAQ) modeling system at a fine horizontal grid resolution of 4-km over an area in the southeastern U.S. that is centered at North Carolina. The objectives are to qunatify the contributions of major atmospheric processes to the formation of major air pollutants and provide the insights into photochemistry that governs the fate of these pollutants at a fine grid scale. The results show that emissions provide a dominant source for gases including ammonia (NH3), nitric oxide (NO), nitrogen dioxide (NO2), and sulfur dioxide (SO2) and Particulate Matter (PM) species including fine PM (PM2.5) and its composition such as sulfate, elemental carbon, primary organic aerosol, and other inorganic fine PM in both months. While transport acts as a major sink for NH3, NO, and SO2 at most sites and PM2.5 and most of PM2.5 composition at urban sites, it provides a major source for nitric acid (HNO3) and ozone (O3) at most sites in both months, and secondary PM species in August and most PM species in December at rural and remote sites. Gas-phase chemistry serves as a source for NO2 and HNO3 but a sink for O3 at urban and suburban sites and for NO and SO2 at all sites. PM processes contribute to the formation of PM2.5 and nitrate () at the urban and suburban sites and secondary organic aerosol (SOA) at most sites in December and ammonium () in both months. They reduce formation at most sites in August and at rural and remote sites in December and the formation of PM2.5 and SOA at most sites in August. Dry deposition is an important sink for all these species in both months. The total odd oxygen (Ox) production and the total hydroxyl radical (OH) reacted are much higher at urban and suburban sites than at rural sites. Significant amounts of OH are consumed by biogenic volatile organic compounds (BVOCs) in the rural and remote areas and a combination of anthropogenic VOCs (AVOCs) and BVOCs
文摘A multiple-pollutant version of CMAQ v4.6 (i.e., CMAQ-MP) has been applied by the US EPA over continental US in 2002 to demonstrate the model’s capability in reproducing the long-term trends of ambient criteria and hazardous air pollutants (CAPs and HAPs, respectively) in support of regulatory analysis for air quality management. In this study, a comprehensive model performance evaluation for the full year of 2002 is performed for the first time for CMAQ-MP using the surface networks and satellite measurements. CMAQ-MP shows a comparable and improved performance for most CAPs species as compared to an older version of CMAQ that did not treat HAPs and used older versions of national emission inventories. CMAQ-MP generally gives better performance for CAPs than for HAPs. Max 8-h ozone (O3) mixing ratios are well reproduced in the O3season. The seasonal-mean performance is fairly good for fine particulate matter (PM2.5), sulfate (SO42-), and mercury (Hg) wet deposition and worse for other CAPs and HAPs species. The reasons for the model biases may be attributed to uncertainties in emissions for some species (e.g., ammonia (NH3), elemental carbon (EC), primary organic aerosol (POA), HAPs), gas/aerosol chemistry treatments (e.g., secondary or- ganic aerosol formation, meteorology (e.g., overestimate in summer precipitation), measurements (e.g., NO3-), and the use of a coarse grid resolution. CMAQ cannot well reproduce spatial and seasonal variations of column variables except for nitrogen dioxide (NO2) and the ratio of column mass of HCHO/NO2. Possible reasons include inaccurate seasonal allocation or underestimation of emissions, inaccurate BCONs at higher altitudes, lack of model treatments such as mineral dust or plume-in-grid process, and limitations and errors in satellite data retrievals. The process analysis results show that in addition to transport, gas chemistry or aerosol/emissions play the most important roles for O3 or PM2.5, respectively. For most HAPs, emissions are important sources and cloud process