Abstract In this paper, we study the order of the growth and exponents of convergence of zeros and poles of meromorphic solutions of some linear and nonlinear difference equations which have admissible meromorphic sol...Abstract In this paper, we study the order of the growth and exponents of convergence of zeros and poles of meromorphic solutions of some linear and nonlinear difference equations which have admissible meromorphic solutions of finite order.展开更多
The Neo-Tethys Ocean was an eastward-gaping triangular oceanic embayment between Laurasia to the north and Gondwana to the south.The Neo-Tethys Ocean was initiated from the Early Permian with mircoblocks rifted from t...The Neo-Tethys Ocean was an eastward-gaping triangular oceanic embayment between Laurasia to the north and Gondwana to the south.The Neo-Tethys Ocean was initiated from the Early Permian with mircoblocks rifted from the northern margin of Gondwana.As the microblocks drifted northwards,the Neo-Tethys Ocean was expanded.Most of these microblocks collided with the Eurasia continent in the Late Triassic,leading to the final closure of the Paleo-Tethys Ocean,followed by oceanic subduction of the Neo-Tethys oceanic slab beneath the newly formed southern margin of the Eurasia continent.As the splitting of Gondwana continued,African-Arabian,Indian and Australian continents were separated from Gondwana and moved northwards at different rates.Collision of these blocks with the Eurasia continent occurred at different time during the Cenozoic,resulting in the closure of the Neo-Tethys Ocean and building of the most significant Alps-Zagros-Himalaya orogenic belt on Earth.The tectonic evolution of the Neo-Tethys Ocean shows different characteristics from west to east:Multi-oceanic basins expansion,bidirectional subduction and microblocks collision dominate in the Mediterranean region;northward oceanic subduction and diachronous continental collision along the Zagros suture occur in the Middle East;the Tibet and Southeast Asia are characterized by multi-block riftings from Gondwana and multi-stage collisions with the Eurasia continent.The negative buoyancy of subducting oceanic slabs can be considered as the main engine for northward drifting of Gondwana-derived blocks and subduction of the Neo-Tethys Ocean.Meanwhile,mantle convection and counterclockwise rotation of Gondwana-derived blocks and the Gondwana continent around an Euler pole in West Africa in non-free boundary conditions also controlled the evolution of the Neo-Tethys Ocean.展开更多
To clearly understand passenger car structure's crashworthiness in typical side impacts of pole and moving deformable barrier (MDB) impact modes, which could assist the establishment of Chinese vehicle side impact ...To clearly understand passenger car structure's crashworthiness in typical side impacts of pole and moving deformable barrier (MDB) impact modes, which could assist the establishment of Chinese vehicle side impact safety regulations, a full midsized car finite element model, calibrated by pole side impact test, was built and the p01e side impact according to European New Car Assessment Program (EuroNCAP) and the MDB side impact according to ECE R95 regulations were simulated with LS-DYNA. The accelerations and the structure deformations from simulations were compared. It can be concluded that the pole side impact focuses primarily on side structure crashworthiness as a result of large intrusions, while the MDB side impact focuses primarily on full side structure crashworthiness. Accordingly, occupant protection strategies focus on different aspects to improve side impact safety. In the pole side impact the objective is to maintain the passenger compartment and protect the passenger's head from impacting the pole, while in the MDB side impact the objective is to protect the full human body. In the design of the car side structures, at least these two tests should be considered for assessing their side impact crashworthiness. Conducting these two side impact tests as certified tests provides insights into car safety during side impacts.展开更多
Data scarcity is a major obstacle for high-resolution mapping of permafrost on the Tibetan Plateau(TP).This study produces a new permafrost stability distribution map for the 2010 s(2005–2015)derived from the predict...Data scarcity is a major obstacle for high-resolution mapping of permafrost on the Tibetan Plateau(TP).This study produces a new permafrost stability distribution map for the 2010 s(2005–2015)derived from the predicted mean annual ground temperature(MAGT)at a depth of zero annual amplitude(10–25 m)by integrating remotely sensed freezing degree-days and thawing degree-days,snow cover days,leaf area index,soil bulk density,high-accuracy soil moisture data,and in situ MAGT measurements from 237 boreholes on the TP by using an ensemble learning method that employs a support vector regression model based on distance-blocked resampled training data with 200 repetitions.Validation of the new permafrost map indicates that it is probably the most accurate of all currently available maps.This map shows that the total area of permafrost on the TP,excluding glaciers and lakes,is approximately 115.02(105.47–129.59)×10^4 km^2.The areas corresponding to the very stable,stable,semi-stable,transitional,and unstable types are 0.86×10^4,9.62×10^4,38.45×10^4,42.29×10^4,and 23.80×10^4 km^2,respectively.This new map is of fundamental importance for engineering planning and design,ecosystem management,and evaluation of the permafrost change in the future on the TP as a baseline.展开更多
Based on ranging intersection theory, a new method which is simple and easy to operate was proposed for data collection in the mine surface deformation monitoring with GPS-RTK centering rod measurements. It can fully ...Based on ranging intersection theory, a new method which is simple and easy to operate was proposed for data collection in the mine surface deformation monitoring with GPS-RTK centering rod measurements. It can fully eliminate the inevitable shaking error and the vertical deflection, and to some extent weaken the multipath effect on the estimates of coordinates in a relatively short period of time, using high-frequency observations. The results show that three-dimensional coordinates with a height accuracy better than 1 cm, horizontal accuracy better than 2-4 cm can be achieved through only 15-30 s continuous observation by 20 Hz high-frequency and effectively improve the measurement accuracy and efficiency of RTK, fully satisfying the high-speed and high-precision data acquisition in mine surface subsidence deformation monitoring.展开更多
Linear quadratic Gaussian with loop transfer recovery (LQG/LTR) gain scheduling technique is utilized to design gain scheduling autopilot for surface-to-air missile. In order to eliminate the artificial uncertaintie...Linear quadratic Gaussian with loop transfer recovery (LQG/LTR) gain scheduling technique is utilized to design gain scheduling autopilot for surface-to-air missile. In order to eliminate the artificial uncertainties that the traditional "trial and error" de- sign process introduces into system, a method to design target loop based on pole assignment is proposed, which provides an explicit algorithm to construct the matrix differential Riccati equation (MDRE) based on the expected poles determined by the performance specifications. Meanwhile, it is proved that by introducing integrators to augment plant dynamics the fast modes of LQG/LTR gain scheduling controller can be restrained effectively, which alleviates an obstacle for the engineering application of LQG/LTR gain scheduling technique. The proposed method is applied in the design of LQG/LTR gain scheduling autopilot for a surface-to-air missile. The design and simulation results indicate that the fast modes of controller are eliminated obviously, and that the dynamic characteristics of autopilot are stable when flight Mach number and altitude vary.展开更多
The Al-Mg-Mn alloy sheets with and without trace Sc and Zr were investigated by means of tensile test, X-ray diffraction, optical microscope, and transmission electron microscope. The indexes of in-plane anisotropy (...The Al-Mg-Mn alloy sheets with and without trace Sc and Zr were investigated by means of tensile test, X-ray diffraction, optical microscope, and transmission electron microscope. The indexes of in-plane anisotropy (IIPA) of their tensile mechanical properties were calculated and their inverse pole figures were obtained by Harris method. The two alloy sheets have the same law of in-plane anisotropy and remarkable in-plane anisotropy of mechanical properties, and the IIPA of the alloy sheet with Sc and Zr is bigger than that of the alloy sheet without Sc and Zr. The relationships of the in-plane anisotropy and the anisotropy of the crystallographic texture were analyzed based on the model of monocrystal. It is the common action of the anisotropy of crystallography and microstructures that causes the in-plane anisotropy of their mechanical properties, but the major cause is the { 110 }〈112〉 crystallographic texture. The trace Sc and Zr can promote the formation and stabilization of the { 110 } 〈 112〉 texture, inhibit the formation of the { 100 } 〈001 〉 texture, and increase the in-plane anisotropy of the alloy sheet containing trace Sc and Zr.展开更多
基金supported by National Natural Science Foundation of China (Grant No. 10871076)
文摘Abstract In this paper, we study the order of the growth and exponents of convergence of zeros and poles of meromorphic solutions of some linear and nonlinear difference equations which have admissible meromorphic solutions of finite order.
基金supported by the National Natural Science Foundation of China(Grant No.41688103)the International Cooperation Program of the Chinese Academy of Sciences(Grant No.GJHZ1776)。
文摘The Neo-Tethys Ocean was an eastward-gaping triangular oceanic embayment between Laurasia to the north and Gondwana to the south.The Neo-Tethys Ocean was initiated from the Early Permian with mircoblocks rifted from the northern margin of Gondwana.As the microblocks drifted northwards,the Neo-Tethys Ocean was expanded.Most of these microblocks collided with the Eurasia continent in the Late Triassic,leading to the final closure of the Paleo-Tethys Ocean,followed by oceanic subduction of the Neo-Tethys oceanic slab beneath the newly formed southern margin of the Eurasia continent.As the splitting of Gondwana continued,African-Arabian,Indian and Australian continents were separated from Gondwana and moved northwards at different rates.Collision of these blocks with the Eurasia continent occurred at different time during the Cenozoic,resulting in the closure of the Neo-Tethys Ocean and building of the most significant Alps-Zagros-Himalaya orogenic belt on Earth.The tectonic evolution of the Neo-Tethys Ocean shows different characteristics from west to east:Multi-oceanic basins expansion,bidirectional subduction and microblocks collision dominate in the Mediterranean region;northward oceanic subduction and diachronous continental collision along the Zagros suture occur in the Middle East;the Tibet and Southeast Asia are characterized by multi-block riftings from Gondwana and multi-stage collisions with the Eurasia continent.The negative buoyancy of subducting oceanic slabs can be considered as the main engine for northward drifting of Gondwana-derived blocks and subduction of the Neo-Tethys Ocean.Meanwhile,mantle convection and counterclockwise rotation of Gondwana-derived blocks and the Gondwana continent around an Euler pole in West Africa in non-free boundary conditions also controlled the evolution of the Neo-Tethys Ocean.
文摘To clearly understand passenger car structure's crashworthiness in typical side impacts of pole and moving deformable barrier (MDB) impact modes, which could assist the establishment of Chinese vehicle side impact safety regulations, a full midsized car finite element model, calibrated by pole side impact test, was built and the p01e side impact according to European New Car Assessment Program (EuroNCAP) and the MDB side impact according to ECE R95 regulations were simulated with LS-DYNA. The accelerations and the structure deformations from simulations were compared. It can be concluded that the pole side impact focuses primarily on side structure crashworthiness as a result of large intrusions, while the MDB side impact focuses primarily on full side structure crashworthiness. Accordingly, occupant protection strategies focus on different aspects to improve side impact safety. In the pole side impact the objective is to maintain the passenger compartment and protect the passenger's head from impacting the pole, while in the MDB side impact the objective is to protect the full human body. In the design of the car side structures, at least these two tests should be considered for assessing their side impact crashworthiness. Conducting these two side impact tests as certified tests provides insights into car safety during side impacts.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA19070204)the National Natural Science Foundation of China(Grant Nos.42071421,41630856)。
文摘Data scarcity is a major obstacle for high-resolution mapping of permafrost on the Tibetan Plateau(TP).This study produces a new permafrost stability distribution map for the 2010 s(2005–2015)derived from the predicted mean annual ground temperature(MAGT)at a depth of zero annual amplitude(10–25 m)by integrating remotely sensed freezing degree-days and thawing degree-days,snow cover days,leaf area index,soil bulk density,high-accuracy soil moisture data,and in situ MAGT measurements from 237 boreholes on the TP by using an ensemble learning method that employs a support vector regression model based on distance-blocked resampled training data with 200 repetitions.Validation of the new permafrost map indicates that it is probably the most accurate of all currently available maps.This map shows that the total area of permafrost on the TP,excluding glaciers and lakes,is approximately 115.02(105.47–129.59)×10^4 km^2.The areas corresponding to the very stable,stable,semi-stable,transitional,and unstable types are 0.86×10^4,9.62×10^4,38.45×10^4,42.29×10^4,and 23.80×10^4 km^2,respectively.This new map is of fundamental importance for engineering planning and design,ecosystem management,and evaluation of the permafrost change in the future on the TP as a baseline.
基金Projects(41074010,40904004)supported by National Natural Science Foundation of ChinaProject(LEDM2010B12)supported by the Scientific Research Foundation of Key Laboratory for Land Environment and Disaster Monitoring of SBSM,China
文摘Based on ranging intersection theory, a new method which is simple and easy to operate was proposed for data collection in the mine surface deformation monitoring with GPS-RTK centering rod measurements. It can fully eliminate the inevitable shaking error and the vertical deflection, and to some extent weaken the multipath effect on the estimates of coordinates in a relatively short period of time, using high-frequency observations. The results show that three-dimensional coordinates with a height accuracy better than 1 cm, horizontal accuracy better than 2-4 cm can be achieved through only 15-30 s continuous observation by 20 Hz high-frequency and effectively improve the measurement accuracy and efficiency of RTK, fully satisfying the high-speed and high-precision data acquisition in mine surface subsidence deformation monitoring.
文摘Linear quadratic Gaussian with loop transfer recovery (LQG/LTR) gain scheduling technique is utilized to design gain scheduling autopilot for surface-to-air missile. In order to eliminate the artificial uncertainties that the traditional "trial and error" de- sign process introduces into system, a method to design target loop based on pole assignment is proposed, which provides an explicit algorithm to construct the matrix differential Riccati equation (MDRE) based on the expected poles determined by the performance specifications. Meanwhile, it is proved that by introducing integrators to augment plant dynamics the fast modes of LQG/LTR gain scheduling controller can be restrained effectively, which alleviates an obstacle for the engineering application of LQG/LTR gain scheduling technique. The proposed method is applied in the design of LQG/LTR gain scheduling autopilot for a surface-to-air missile. The design and simulation results indicate that the fast modes of controller are eliminated obviously, and that the dynamic characteristics of autopilot are stable when flight Mach number and altitude vary.
基金This work was financially supported by the National Key Fundamental Research Development Program (No.G1999064911).
文摘The Al-Mg-Mn alloy sheets with and without trace Sc and Zr were investigated by means of tensile test, X-ray diffraction, optical microscope, and transmission electron microscope. The indexes of in-plane anisotropy (IIPA) of their tensile mechanical properties were calculated and their inverse pole figures were obtained by Harris method. The two alloy sheets have the same law of in-plane anisotropy and remarkable in-plane anisotropy of mechanical properties, and the IIPA of the alloy sheet with Sc and Zr is bigger than that of the alloy sheet without Sc and Zr. The relationships of the in-plane anisotropy and the anisotropy of the crystallographic texture were analyzed based on the model of monocrystal. It is the common action of the anisotropy of crystallography and microstructures that causes the in-plane anisotropy of their mechanical properties, but the major cause is the { 110 }〈112〉 crystallographic texture. The trace Sc and Zr can promote the formation and stabilization of the { 110 } 〈 112〉 texture, inhibit the formation of the { 100 } 〈001 〉 texture, and increase the in-plane anisotropy of the alloy sheet containing trace Sc and Zr.