Polarizing beam splitter (PBS) is a critical optical component in projection display system because PBS performance greatly influences the contrast and brightness of the system. PBS performance is usually measured by ...Polarizing beam splitter (PBS) is a critical optical component in projection display system because PBS performance greatly influences the contrast and brightness of the system. PBS performance is usually measured by spectrophotometer after coating and cementing, but the measured result cannot represent the actual performance in practice because people usually change the incident angle in one plane (horizontal plane) and do not consider the other plane (vertical plane). Geometrical polarization rotation occurring at reduced F-number influences the measuring precision of s-polarization transmittance (Ts) and p-polarization reflectance (Rp). A more accurate and practical way to measure the performance of broadband, wide-angle PBS is presented in this paper.展开更多
Design and experimental studies on the wavelength multiplexing and polarization multiplexing of diode laser arrays were carried out. First, the structure of a A1GalnAs/GaAs/AIGaAs quantum well under compressive strain...Design and experimental studies on the wavelength multiplexing and polarization multiplexing of diode laser arrays were carried out. First, the structure of a A1GalnAs/GaAs/AIGaAs quantum well under compressive strain was used because the characteristic of wavelength was easier to adjust. We obtained diode laser arrays lasing in five different wavelengths, about 760 nm, 800 nm, 860 nm, 930 nm, and 976 nm. At the same time, four edge filters were designed, and an experimental study on the beam multiplexing of diode laser arrays was carried out. Second, two beams with different polarization states were composited using a half wave plate and a polarizing beam-splitter prism. After that, the beam focusing system was designed. Ultimately, ten beams of diode laser arrays in five wavelengths and two polarization states were composited, the total output power was 196 W and the overall efficiency was 76%. The size of the output focus spot was 144 × 1330μm2, and the power density of the focused light was as high as 1.02 ×105 W/cm2. Compared with a single diode laser array, the power density of the composite beam was improved by 4.3 times.展开更多
This paper discusses the well-known delayed choice Quantum Eraser experiment performed by Kim <em>et al.</em> in 2000 and analyzes it from a Classical Physics perspective. I have included a diagram of the ...This paper discusses the well-known delayed choice Quantum Eraser experiment performed by Kim <em>et al.</em> in 2000 and analyzes it from a Classical Physics perspective. I have included a diagram of the setup used in the experiment. I show that the result of the experiment can be explained by Classical Physics and does not require “Spooky action at a distance” due to entangled particles, as Einstein famously once put it, nor events modifying the past due to the delayed choice aspect of the experiment.展开更多
Polarizing beam splitter has rather significant applications in polarization diversity circuits and polarization multiplexing systems.In this paper,we present an asymmetric polarizing beam splitter utilizing hybrid pl...Polarizing beam splitter has rather significant applications in polarization diversity circuits and polarization multiplexing systems.In this paper,we present an asymmetric polarizing beam splitter utilizing hybrid plasmonic waveguide.The special hybrid structure with a hybrid waveguide and a dielectric waveguide can limit the energy of TE and TM modes to a different layer.Therefore,we can achieve beam splitting by adjusting the corresponding parameters of the two waveguides.First,we studied the influences of different structure parameters on the real part of the effective mode refractive index of the two waveguides,and obtained a set of parameters that satisfy the condition of strong coupling of TM mode and weak coupling of TE mode.Then,the performance of our proposed polarizing beam splitter is evaluated numerically.The length of the coupling section is only 4.1μm,and the propagation loss of TM and TE modes is 0.0025 d B/μm and 0.0031 d B/μm respectively.Additionally,the extinction ratios of TM and TE modes are 10.62 d B and 12.55 d B,respectively.Particularly,the proposed device has excellent wavelength insensitivity.Over the entire C-band,the fluctuation of the whole normalized output power is less than 0.03.In short,our proposed asymmetric polarizing beam splitter features ultra-compactness,low propagation loss,and broad bandwidth,which would provide promising applications in polarization multiplexing system and polarization diversity circuits relevant to optical interconnection.展开更多
为了研究洛匈棱镜对单模高斯光束的影响,采用分析棱镜胶合剂介质层中的光的干涉效应的方法,对洛匈棱镜对单模高斯光束的影响进行了详细的理论分析。结果表明,对于给定的入射单模高斯光束,若光在胶合层界面上的入射角、胶合层的厚度和胶...为了研究洛匈棱镜对单模高斯光束的影响,采用分析棱镜胶合剂介质层中的光的干涉效应的方法,对洛匈棱镜对单模高斯光束的影响进行了详细的理论分析。结果表明,对于给定的入射单模高斯光束,若光在胶合层界面上的入射角、胶合层的厚度和胶合剂的折射率,三者确定其二,棱镜对透射光束光强分布的影响将随另一参量的变化作周期性振荡,且透射高斯光束的形状也随之改变。比较而言,棱镜对透射 o 光的影响要小于 e 光,但从总体上看,棱镜无论对 o光还是对 e 光的影响均小于1%。展开更多
基金(No. 2004C31107) supported by the Science and Technology Program of Zhejiang Province, China
文摘Polarizing beam splitter (PBS) is a critical optical component in projection display system because PBS performance greatly influences the contrast and brightness of the system. PBS performance is usually measured by spectrophotometer after coating and cementing, but the measured result cannot represent the actual performance in practice because people usually change the incident angle in one plane (horizontal plane) and do not consider the other plane (vertical plane). Geometrical polarization rotation occurring at reduced F-number influences the measuring precision of s-polarization transmittance (Ts) and p-polarization reflectance (Rp). A more accurate and practical way to measure the performance of broadband, wide-angle PBS is presented in this paper.
基金supported by the National Science Foundation of China(No.61275145)
文摘Design and experimental studies on the wavelength multiplexing and polarization multiplexing of diode laser arrays were carried out. First, the structure of a A1GalnAs/GaAs/AIGaAs quantum well under compressive strain was used because the characteristic of wavelength was easier to adjust. We obtained diode laser arrays lasing in five different wavelengths, about 760 nm, 800 nm, 860 nm, 930 nm, and 976 nm. At the same time, four edge filters were designed, and an experimental study on the beam multiplexing of diode laser arrays was carried out. Second, two beams with different polarization states were composited using a half wave plate and a polarizing beam-splitter prism. After that, the beam focusing system was designed. Ultimately, ten beams of diode laser arrays in five wavelengths and two polarization states were composited, the total output power was 196 W and the overall efficiency was 76%. The size of the output focus spot was 144 × 1330μm2, and the power density of the focused light was as high as 1.02 ×105 W/cm2. Compared with a single diode laser array, the power density of the composite beam was improved by 4.3 times.
文摘This paper discusses the well-known delayed choice Quantum Eraser experiment performed by Kim <em>et al.</em> in 2000 and analyzes it from a Classical Physics perspective. I have included a diagram of the setup used in the experiment. I show that the result of the experiment can be explained by Classical Physics and does not require “Spooky action at a distance” due to entangled particles, as Einstein famously once put it, nor events modifying the past due to the delayed choice aspect of the experiment.
基金supported by the Shenzhen Science and Technology Program(JCYJ20210324093806017)the ShenzhenHong Kong Joint Innovation Foundation(SGDX20190919094401725)。
文摘Polarizing beam splitter has rather significant applications in polarization diversity circuits and polarization multiplexing systems.In this paper,we present an asymmetric polarizing beam splitter utilizing hybrid plasmonic waveguide.The special hybrid structure with a hybrid waveguide and a dielectric waveguide can limit the energy of TE and TM modes to a different layer.Therefore,we can achieve beam splitting by adjusting the corresponding parameters of the two waveguides.First,we studied the influences of different structure parameters on the real part of the effective mode refractive index of the two waveguides,and obtained a set of parameters that satisfy the condition of strong coupling of TM mode and weak coupling of TE mode.Then,the performance of our proposed polarizing beam splitter is evaluated numerically.The length of the coupling section is only 4.1μm,and the propagation loss of TM and TE modes is 0.0025 d B/μm and 0.0031 d B/μm respectively.Additionally,the extinction ratios of TM and TE modes are 10.62 d B and 12.55 d B,respectively.Particularly,the proposed device has excellent wavelength insensitivity.Over the entire C-band,the fluctuation of the whole normalized output power is less than 0.03.In short,our proposed asymmetric polarizing beam splitter features ultra-compactness,low propagation loss,and broad bandwidth,which would provide promising applications in polarization multiplexing system and polarization diversity circuits relevant to optical interconnection.
文摘为了研究洛匈棱镜对单模高斯光束的影响,采用分析棱镜胶合剂介质层中的光的干涉效应的方法,对洛匈棱镜对单模高斯光束的影响进行了详细的理论分析。结果表明,对于给定的入射单模高斯光束,若光在胶合层界面上的入射角、胶合层的厚度和胶合剂的折射率,三者确定其二,棱镜对透射光束光强分布的影响将随另一参量的变化作周期性振荡,且透射高斯光束的形状也随之改变。比较而言,棱镜对透射 o 光的影响要小于 e 光,但从总体上看,棱镜无论对 o光还是对 e 光的影响均小于1%。