Optical bound states in the continuum(BICs)have recently stimulated a research boom,accompanied by demonstrations of abundant exotic phenomena and applications.With ultrahigh quality(Q)factors,optical BICs have powerf...Optical bound states in the continuum(BICs)have recently stimulated a research boom,accompanied by demonstrations of abundant exotic phenomena and applications.With ultrahigh quality(Q)factors,optical BICs have powerful abilities to trap light in optical structures from the continuum of propagation waves in free space.Besides the high Q factors enabled by the confined properties,many hidden topological characteristics were discovered in optical BICs.Especially in periodic structures with well-defined wave vectors,optical BICs were discovered to carry topological charges in momentum space,underlying many unique physical properties.Both high Q factors and topological vortex configurations in momentum space enabled by BICs bring new degrees of freedom to modulate light.BICs have enabled many novel discoveries in light-matter interactions and spin-orbit interactions of light,and BIC applications in lasing and sensing have also been well explored with many advantages.In this paper,we review recent developments of optical BICs in periodic structures,including the physical mechanisms of BICs,explored effects enabled by BICs,and applications of BICs.In the outlook part,we provide a perspective on future developments for BICs.展开更多
Polarization manipulation is a significant issue for artificial modulation of the electromagnetic(EM) wave, but general mechanisms all suffer the restriction of inherent symmetric properties between opposite handednes...Polarization manipulation is a significant issue for artificial modulation of the electromagnetic(EM) wave, but general mechanisms all suffer the restriction of inherent symmetric properties between opposite handedness.Herein, a strategy to independently and arbitrarily manipulate the EM wave with orthogonal circular polarizations based on a metasurface is proposed, which effectually breaks through traditional symmetrical characteristics between orthogonal handedness. By synthesizing the propagation phase and geometric phase, the appropriate Jones matrix is calculated to obtain independent wavefront manipulation of EM waves with opposite circular polarizations. Two transmissive ultra-thin meta-deflectors are proposed to demonstrate the asymmetrical refraction of transmitted circularly polarized waves in the microwave region. Simulated transmitted phase front and measured far-field intensity distributions are in excellent agreement, indicating that the transmitted wave with different polarizations can be refracted into arbitrary and independent directions within a wide frequency band(relative bandwidth of 25%). The results presented in this paper provide more freedom for the manipulation of EM waves, and motivate the realizations of various polarization-independent properties for all frequency spectra.展开更多
A 1-bit electronically controlled metasurface reflectarray is presented to achieve beam steering with multiple polarization manipulations. A metsurface unit cell loaded by two PIN diodes is designed. By switching the ...A 1-bit electronically controlled metasurface reflectarray is presented to achieve beam steering with multiple polarization manipulations. A metsurface unit cell loaded by two PIN diodes is designed. By switching the two PIN diodes between ON and OFF states, the isotropic and anisotropic reflections can be flexibly achieved. For either the isotropic reflection or the anisotropic reflection, the two operation states achieve the reflection coefficients with approximately equal magnitude and 180°out of phase, thus giving rise to the isotropic/anisotropic 1-bit metasurface unit cells. With the 1-bit unit cells, a 12-by-12 metasurface reflectarray is optimally designed and fabricated. Under either y-or x-polarized incident wave illumination, the reflectarray can achieve the co-polarized and cross-polarized beam scanning, respectively, with the peak gains of 20.08 d Bi and 17.26 d Bi within the scan range of about ±50°. With the right-handed circular polarization(RHCP) excitation, the left-handed circular polarization(LHCP) radiation with the peak gain of 16.98 d Bic can be achieved within the scan range of ±50°. Good agreement between the experimental results and the simulation results are observed for 2D beam steering and polarization manipulation capabilities.展开更多
The field of silicon nanophotonics has attracted considerable attention in the past decade because of its unique advantages,including complementary metal–oxide–semiconductor(CMOS) compatibility and the ability to ...The field of silicon nanophotonics has attracted considerable attention in the past decade because of its unique advantages,including complementary metal–oxide–semiconductor(CMOS) compatibility and the ability to achieve an ultra-high integration density. In particular, silicon nanophotonic integrated devices for on-chip light manipulation have been developed successfully and have played very import roles in various applications. In this paper, we review the recent progress of silicon nanophotonic devices for on-chip light manipulation, including the static type and the dynamic type. Static onchip light manipulation focuses on polarization/mode manipulation, as well as light nanofocusing, while dynamic on-chip light manipulation focuses on optical modulation/switching. The challenges and prospects of high-performance silicon nanophotonic integrated devices for on-chip light manipulation are discussed.展开更多
Highly efficient generation and arbitrary manipulation of spin-polarized terahertz(THz)radiation will enable chiral lightwave driven quantum nonequilibrium state regulation,induce new electronic structures,consequentl...Highly efficient generation and arbitrary manipulation of spin-polarized terahertz(THz)radiation will enable chiral lightwave driven quantum nonequilibrium state regulation,induce new electronic structures,consequently provide a powerful experi-mental tool for investigation of nonlinear THz optics and extreme THz science and applications.THz circular dichromic spectroscopy,ultrafast electron bunch manipulation,as well as THz imaging,sensing,and telecommunication,also need chiral THz waves.Here we review optical generation of circularly-polarized THz radiation but focus on recently emerged polarization tunable spintronic THz emission techniques,which possess many advantages of ultra-broadband,high efficiency,low cost,easy for integration and so on.We believe that chiral THz sources based on the combination of electron spin,ultra-fast optical techniques and material structure engineering will accelerate the development of THz science and applications.展开更多
Electron spin-polarization modulation with a ferromagnetic strip of in-plane magnetization is analyzed in a hybrid ferromagnet/semiconductor filter device.The dependencies of electron spin-polarization on the strip’s...Electron spin-polarization modulation with a ferromagnetic strip of in-plane magnetization is analyzed in a hybrid ferromagnet/semiconductor filter device.The dependencies of electron spin-polarization on the strip’s magnetization strength,width and position have been systematically investigated.A novel magnetic control spin-polarization switch is proposed by inserting a ferromagnetic metal(FM)strip eccentric in relation to off the center of the spin filter,which produces the first energy level spin-polarization reversal.It is believed to be of significant importance for the realization of semiconductor spintronics multiple-value logic devices.展开更多
Manipulation of terahertz wave by metasurfaces has shown tremendous potential in developing compact and functional terahertz optical devices.Here,we propose complementary bilayer metasurfaces for enhanced terahertz wa...Manipulation of terahertz wave by metasurfaces has shown tremendous potential in developing compact and functional terahertz optical devices.Here,we propose complementary bilayer metasurfaces for enhanced terahertz wave amplitude and phase manipulation.The metasurfaces are composed of one layer of metal cut-wire arrays and one layer of their complementary aperture arrays separated by a dielectric spacer.Through the near-field coupling between transverse magnetic resonances in the metal apertures and electric resonances in the metal cut-wires,the structures can manipulate the cross polarization conversion and phase dispersion of terahertz wave.Particularly,the designed metasurfaces demonstrate a phase delay of 180°between two orthogonal axes with the same transmission amplitude between 0.70 and 1.0 THz,enabling a 45°broadband polarization conversion.When the metal cut-wires are rotated with respect to the apertures or the thickness of the dielectric spacer is changed,the amplitude and phase dispersion of the transmitted terahertz wave can be tuned.Such complementary coupled bilayer metasurfaces offer a new method to control the amplitude and phase dispersion of terahertz wave and promise great potential for applications in terahertz meta-devices.展开更多
Images perceived by human eyes or recorded by cameras are usually optical patterns with spatially varying intensity or color profiles.In addition to the intensity and color,the information of an image can be encoded i...Images perceived by human eyes or recorded by cameras are usually optical patterns with spatially varying intensity or color profiles.In addition to the intensity and color,the information of an image can be encoded in a spatially varying distribution of phase or polarization state.Interestingly,such images might not be able to be directly viewed by human eyes or cameras because they may exhibit highly uniform intensity profiles.Here,we propose and experimentally demonstrate an approach to hide a high-resolution grayscale image in a square laser beam with a size of less than half a millimeter.An image with a pixel size of 300×300 nm is encoded into the spatially variant polarization states of the laser beam,which can be revealed after passing through a linear polarizer.This unique technology for hiding grayscale images and polarization manipulation provides new opportunities for various applications,including encryption,imaging,optical communications,quantum science and fundamental physics.展开更多
We propose a switchable vortex beam polarization state terahertz multi-layer metasurface,which consists of threelayer elliptical metal crosses,four-layer dielectrics,and two-layer hollow metal circles,which are altern...We propose a switchable vortex beam polarization state terahertz multi-layer metasurface,which consists of threelayer elliptical metal crosses,four-layer dielectrics,and two-layer hollow metal circles,which are alternately superimposed.Under the normal incidence of left-handed circularly polarized(LCP)wave and the right-handed circularly polarized(RCP)waves,the proposed structure realizes three independent control functions,i.e.,focused and vortex beam,vortex beam with different topological charges,and polarization states switching,and azimuth switching of two vortex beams with different polarization states.The results show that the proposed metasurface provides a new idea for investigating the multifunctional terahertz wave modulation devices.展开更多
Owing to weak light-matter interactions in natural materials,it is difficult to dynamically tune and switch emission polariza-tion states of plasmonic emitters(or antennas)at nanometer scales.Here,by using a control l...Owing to weak light-matter interactions in natural materials,it is difficult to dynamically tune and switch emission polariza-tion states of plasmonic emitters(or antennas)at nanometer scales.Here,by using a control laser beam to induce a bubble(n=1.0)in water(n=1.333)to obtain a large index variation as high as|Δn|=0.333,the emission polarization of an ultra-small plasmonic emitter(~0.4λ^(2))is experimentally switched at nanometer scales.The plasmonic emitter consists of two orthogonal subwavelength metallic nanogroove antennas on a metal surface,and the separation of the two anten-nas is only s_(x)=120 nm.The emission polarization state of the plasmonic emitter is related to the phase difference between the emission light from the two antennas.Because of a large refractive index variation(|Δn|=0.333),the phase difference is greatly changed when a microbubble emerges in water under a low-intensity control laser.As a result,the emission polarization of the ultra-small plasmonic emitter is dynamically switched from an elliptical polarization state to a linear polarization state,and the change of the degree of linear polarization is as high asΔγ≈0.66.展开更多
We simulate the polarization manipulation of bright-dark vector bisolitons at 1-µm wavelength regime.Through changing the pulse parameters,different kinds of pulse shapes and optical spectra are generated in outp...We simulate the polarization manipulation of bright-dark vector bisolitons at 1-µm wavelength regime.Through changing the pulse parameters,different kinds of pulse shapes and optical spectra are generated in output orthogonal polarization directions.When the input vector bisoliton is polarization-locked with 1064 nm central wavelength,“1+1”fundamental dark-dark and“2+1”pseudo-high-order bright-dark group-velocity-locked vector solitons can be achieved through changing the projection angle.When the input vector bisoliton is group-velocity-locked with 1063 nm and 1065 nm central wavelengths,“2+1”and“2+2”pseudo-high-order bright-dark group-velocity-locked vector solitons,bright-dark group-velocity-locked vector solitons with chirp-like temporal oscillations are generated.Our simulation results can provide beneficial conduct for polarization manipulation of vector multi-solitons,and have promising applications in quantum information register,optical communications,nanophotonics,and all-optical switching.展开更多
We propose a kind of spectral polarization-encoding(SPE)for broadband light pulses,which is realized by inducing optical rotatory dispersion(ORD),and decoded by compensating ORD.Combining with polarization-sensitive d...We propose a kind of spectral polarization-encoding(SPE)for broadband light pulses,which is realized by inducing optical rotatory dispersion(ORD),and decoded by compensating ORD.Combining with polarization-sensitive devices,SPE can not only work to control polarization-dependent transmission for central wavelength or bandwidth-tunable filtering,but also can be used for broadband regenerative or multi-pass amplification with a polarization-dependent gain medium to improve output bandwidth.SPE is entirely passive thus very simple to be designed and aligned.By using an ORD crystal with a good transmission beyond 3-μm mid-infrared region,e.g.,Ag Ga S_(2),SPE promises to be applied for the wavelength tuning lasers in mid-infrared region,where the tunning devices are rather under developed compared with those in visible and near-infrared region.展开更多
基金supported by the National Natural Science Foundation of China(Nos.12234007,12221004,12321161645,62325501,62135001,12074049,and 12147102)the National Key R and D Program of China(Nos.2022YFA1404804,2021YFA1400603,and 2023YFA1406900)+4 种基金the Major Program of National Natural Science Foundation of China(Nos.T2394480 and T2394481)the Science and Technology Commission of Shanghai Municipality(Nos.22142200400,21DZ1101500,2019SHZDZX01,and 23DZ2260100)the Fundamental Research Funds for the Central Universities(No.2022CDJQY-007)supported by the China National Postdoctoral Program for Innovative Talents(No.BX20230079)the China Postdoctoral Science Foundation(No.2023M740721).
文摘Optical bound states in the continuum(BICs)have recently stimulated a research boom,accompanied by demonstrations of abundant exotic phenomena and applications.With ultrahigh quality(Q)factors,optical BICs have powerful abilities to trap light in optical structures from the continuum of propagation waves in free space.Besides the high Q factors enabled by the confined properties,many hidden topological characteristics were discovered in optical BICs.Especially in periodic structures with well-defined wave vectors,optical BICs were discovered to carry topological charges in momentum space,underlying many unique physical properties.Both high Q factors and topological vortex configurations in momentum space enabled by BICs bring new degrees of freedom to modulate light.BICs have enabled many novel discoveries in light-matter interactions and spin-orbit interactions of light,and BIC applications in lasing and sensing have also been well explored with many advantages.In this paper,we review recent developments of optical BICs in periodic structures,including the physical mechanisms of BICs,explored effects enabled by BICs,and applications of BICs.In the outlook part,we provide a perspective on future developments for BICs.
基金National Natural Science Foundation of China(NSFC)(61771172,61571155,61401122)Open Project of State Key Laboratory of Millimeter Waves(K201828)
文摘Polarization manipulation is a significant issue for artificial modulation of the electromagnetic(EM) wave, but general mechanisms all suffer the restriction of inherent symmetric properties between opposite handedness.Herein, a strategy to independently and arbitrarily manipulate the EM wave with orthogonal circular polarizations based on a metasurface is proposed, which effectually breaks through traditional symmetrical characteristics between orthogonal handedness. By synthesizing the propagation phase and geometric phase, the appropriate Jones matrix is calculated to obtain independent wavefront manipulation of EM waves with opposite circular polarizations. Two transmissive ultra-thin meta-deflectors are proposed to demonstrate the asymmetrical refraction of transmitted circularly polarized waves in the microwave region. Simulated transmitted phase front and measured far-field intensity distributions are in excellent agreement, indicating that the transmitted wave with different polarizations can be refracted into arbitrary and independent directions within a wide frequency band(relative bandwidth of 25%). The results presented in this paper provide more freedom for the manipulation of EM waves, and motivate the realizations of various polarization-independent properties for all frequency spectra.
基金Project supported by the National Key Research and Development Program of China (Grant No.2021YFA1401001)the National Natural Science Foundation of China (Grant No.62371355)。
文摘A 1-bit electronically controlled metasurface reflectarray is presented to achieve beam steering with multiple polarization manipulations. A metsurface unit cell loaded by two PIN diodes is designed. By switching the two PIN diodes between ON and OFF states, the isotropic and anisotropic reflections can be flexibly achieved. For either the isotropic reflection or the anisotropic reflection, the two operation states achieve the reflection coefficients with approximately equal magnitude and 180°out of phase, thus giving rise to the isotropic/anisotropic 1-bit metasurface unit cells. With the 1-bit unit cells, a 12-by-12 metasurface reflectarray is optimally designed and fabricated. Under either y-or x-polarized incident wave illumination, the reflectarray can achieve the co-polarized and cross-polarized beam scanning, respectively, with the peak gains of 20.08 d Bi and 17.26 d Bi within the scan range of about ±50°. With the right-handed circular polarization(RHCP) excitation, the left-handed circular polarization(LHCP) radiation with the peak gain of 16.98 d Bic can be achieved within the scan range of ±50°. Good agreement between the experimental results and the simulation results are observed for 2D beam steering and polarization manipulation capabilities.
基金Project supported by the National Natural Science Foundation for Distinguished Young Scholars(Grant No.61725503)Zhejiang Provincial Natural Science Foundation(Grant No.Z18F050002)+1 种基金the National Natural Science Foundation of China(Grant Nos.61431166001 and 11861121002)the National Major Research and Development Program of China(Grant No.2016YFB0402502)
文摘The field of silicon nanophotonics has attracted considerable attention in the past decade because of its unique advantages,including complementary metal–oxide–semiconductor(CMOS) compatibility and the ability to achieve an ultra-high integration density. In particular, silicon nanophotonic integrated devices for on-chip light manipulation have been developed successfully and have played very import roles in various applications. In this paper, we review the recent progress of silicon nanophotonic devices for on-chip light manipulation, including the static type and the dynamic type. Static onchip light manipulation focuses on polarization/mode manipulation, as well as light nanofocusing, while dynamic on-chip light manipulation focuses on optical modulation/switching. The challenges and prospects of high-performance silicon nanophotonic integrated devices for on-chip light manipulation are discussed.
基金This work was supported by the Open Project Program of Wuhan National Laboratory for Optoelectronics(No.2018WNLOKF001)the National Key R&D Program of China(No.2019YFB2203102).
文摘Highly efficient generation and arbitrary manipulation of spin-polarized terahertz(THz)radiation will enable chiral lightwave driven quantum nonequilibrium state regulation,induce new electronic structures,consequently provide a powerful experi-mental tool for investigation of nonlinear THz optics and extreme THz science and applications.THz circular dichromic spectroscopy,ultrafast electron bunch manipulation,as well as THz imaging,sensing,and telecommunication,also need chiral THz waves.Here we review optical generation of circularly-polarized THz radiation but focus on recently emerged polarization tunable spintronic THz emission techniques,which possess many advantages of ultra-broadband,high efficiency,low cost,easy for integration and so on.We believe that chiral THz sources based on the combination of electron spin,ultra-fast optical techniques and material structure engineering will accelerate the development of THz science and applications.
基金supported by the National Basic Research Program of China(Grant No.2013CB934003)the State Key Laboratory of Software Development Environment(Grant No.SKLSDE-2013ZX-28)
文摘Electron spin-polarization modulation with a ferromagnetic strip of in-plane magnetization is analyzed in a hybrid ferromagnet/semiconductor filter device.The dependencies of electron spin-polarization on the strip’s magnetization strength,width and position have been systematically investigated.A novel magnetic control spin-polarization switch is proposed by inserting a ferromagnetic metal(FM)strip eccentric in relation to off the center of the spin filter,which produces the first energy level spin-polarization reversal.It is believed to be of significant importance for the realization of semiconductor spintronics multiple-value logic devices.
基金supported in part by the National Research Foundation, Prime Minister’s Office,Singapore under its Competitive Research Program (CRP Award No. NRF-CRP10-2012-04)in part by EDB, Singapore with grant No. S15-1322-IAF OSTIn-SIAG
文摘Manipulation of terahertz wave by metasurfaces has shown tremendous potential in developing compact and functional terahertz optical devices.Here,we propose complementary bilayer metasurfaces for enhanced terahertz wave amplitude and phase manipulation.The metasurfaces are composed of one layer of metal cut-wire arrays and one layer of their complementary aperture arrays separated by a dielectric spacer.Through the near-field coupling between transverse magnetic resonances in the metal apertures and electric resonances in the metal cut-wires,the structures can manipulate the cross polarization conversion and phase dispersion of terahertz wave.Particularly,the designed metasurfaces demonstrate a phase delay of 180°between two orthogonal axes with the same transmission amplitude between 0.70 and 1.0 THz,enabling a 45°broadband polarization conversion.When the metal cut-wires are rotated with respect to the apertures or the thickness of the dielectric spacer is changed,the amplitude and phase dispersion of the transmitted terahertz wave can be tuned.Such complementary coupled bilayer metasurfaces offer a new method to control the amplitude and phase dispersion of terahertz wave and promise great potential for applications in terahertz meta-devices.
基金supported by the Engineering and Physical Sciences Research Council of the United Kingdom(Grant Ref:EP/M003175/1)the support from the Chinese Scholarship Council(CSC,No.201608310007).
文摘Images perceived by human eyes or recorded by cameras are usually optical patterns with spatially varying intensity or color profiles.In addition to the intensity and color,the information of an image can be encoded in a spatially varying distribution of phase or polarization state.Interestingly,such images might not be able to be directly viewed by human eyes or cameras because they may exhibit highly uniform intensity profiles.Here,we propose and experimentally demonstrate an approach to hide a high-resolution grayscale image in a square laser beam with a size of less than half a millimeter.An image with a pixel size of 300×300 nm is encoded into the spatially variant polarization states of the laser beam,which can be revealed after passing through a linear polarizer.This unique technology for hiding grayscale images and polarization manipulation provides new opportunities for various applications,including encryption,imaging,optical communications,quantum science and fundamental physics.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61871355,61831012,and 62271460)the Talent Project of Zhejiang Provincial Department of Science and Technology,China(Grant No.2018R52043)+1 种基金the Zhejiang Key Research and Development Project of China(Grant Nos.2021C03153 and 2022C03166)the Research Funds for the Provincial Universities of Zhejiang Province,China(Grant No.2020YW20)。
文摘We propose a switchable vortex beam polarization state terahertz multi-layer metasurface,which consists of threelayer elliptical metal crosses,four-layer dielectrics,and two-layer hollow metal circles,which are alternately superimposed.Under the normal incidence of left-handed circularly polarized(LCP)wave and the right-handed circularly polarized(RCP)waves,the proposed structure realizes three independent control functions,i.e.,focused and vortex beam,vortex beam with different topological charges,and polarization states switching,and azimuth switching of two vortex beams with different polarization states.The results show that the proposed metasurface provides a new idea for investigating the multifunctional terahertz wave modulation devices.
基金supported by the National Key Research and Development Program of China(2018YFA0704401)the Beijing Natural Science Foundation(Z180015)the National Natural Science Foundation of China(61922002 and 91850103).
文摘Owing to weak light-matter interactions in natural materials,it is difficult to dynamically tune and switch emission polariza-tion states of plasmonic emitters(or antennas)at nanometer scales.Here,by using a control laser beam to induce a bubble(n=1.0)in water(n=1.333)to obtain a large index variation as high as|Δn|=0.333,the emission polarization of an ultra-small plasmonic emitter(~0.4λ^(2))is experimentally switched at nanometer scales.The plasmonic emitter consists of two orthogonal subwavelength metallic nanogroove antennas on a metal surface,and the separation of the two anten-nas is only s_(x)=120 nm.The emission polarization state of the plasmonic emitter is related to the phase difference between the emission light from the two antennas.Because of a large refractive index variation(|Δn|=0.333),the phase difference is greatly changed when a microbubble emerges in water under a low-intensity control laser.As a result,the emission polarization of the ultra-small plasmonic emitter is dynamically switched from an elliptical polarization state to a linear polarization state,and the change of the degree of linear polarization is as high asΔγ≈0.66.
基金Project supported by National Key Research and Development Program of China(Grant No.2018YFB0504500)the National Natural Science Foundation of China(Grant No.51672177)Shanghai Sailing Program(Grant No.20YF1447500).
文摘We simulate the polarization manipulation of bright-dark vector bisolitons at 1-µm wavelength regime.Through changing the pulse parameters,different kinds of pulse shapes and optical spectra are generated in output orthogonal polarization directions.When the input vector bisoliton is polarization-locked with 1064 nm central wavelength,“1+1”fundamental dark-dark and“2+1”pseudo-high-order bright-dark group-velocity-locked vector solitons can be achieved through changing the projection angle.When the input vector bisoliton is group-velocity-locked with 1063 nm and 1065 nm central wavelengths,“2+1”and“2+2”pseudo-high-order bright-dark group-velocity-locked vector solitons,bright-dark group-velocity-locked vector solitons with chirp-like temporal oscillations are generated.Our simulation results can provide beneficial conduct for polarization manipulation of vector multi-solitons,and have promising applications in quantum information register,optical communications,nanophotonics,and all-optical switching.
基金the National Natural Science Foundation of China(Grant Nos.92050203,62075138,61827815,and 61775142)Shenzhen Fundamental Research Project(Grant Nos.JCYJ20190808164007485,JCYJ20190808121817100,JSGG20191231144201722,and JCYJ20190808115601653)。
文摘We propose a kind of spectral polarization-encoding(SPE)for broadband light pulses,which is realized by inducing optical rotatory dispersion(ORD),and decoded by compensating ORD.Combining with polarization-sensitive devices,SPE can not only work to control polarization-dependent transmission for central wavelength or bandwidth-tunable filtering,but also can be used for broadband regenerative or multi-pass amplification with a polarization-dependent gain medium to improve output bandwidth.SPE is entirely passive thus very simple to be designed and aligned.By using an ORD crystal with a good transmission beyond 3-μm mid-infrared region,e.g.,Ag Ga S_(2),SPE promises to be applied for the wavelength tuning lasers in mid-infrared region,where the tunning devices are rather under developed compared with those in visible and near-infrared region.