利用1951-2013年的NCEP/NCAR月平均气温、4次/d的日平均气温、位势高度再分析资料和国家气候中心74项环流指数中的10项极涡指数,统计了近60 a 100、300、500、1 000 h Pa等压面上北半球冬季气温的演变特征以及10项极涡指数与冬季气温的...利用1951-2013年的NCEP/NCAR月平均气温、4次/d的日平均气温、位势高度再分析资料和国家气候中心74项环流指数中的10项极涡指数,统计了近60 a 100、300、500、1 000 h Pa等压面上北半球冬季气温的演变特征以及10项极涡指数与冬季气温的相关关系,讨论了极涡面积和强度指数的变化对北半球冬季气温的影响.结果表明,以20世纪70年代为界,北半球冬季气温呈先降低后升高的变化趋势,所关注的4个等压面上,气温年代际变化均较为明显.300、500、1 000 h Pa等压面上于70年代前中期气温开始升高,而对于100 h Pa等压面上的气温,80年代初期气温突然升高,随后下降.亚洲区极涡面积指数和北美区极涡强度指数与300、500、1 000 h Pa等压面上的冬季气温呈显著相关,且相关系数均为负值.冬季气温与极涡面积和强度指数的相关系数显著的个例在1 000h Pa等压面上分布最多,随着高度的升高,显著的个例逐渐减少.极涡对2012年冬季发生在欧亚大陆和2013年冬季发生在北美洲的极端低温事件有显著影响.展开更多
利用NCEP/NCAR再分析资料和NOAA海温资料,用EOF、相关分析等方法,分析了1960—2010年500 h Pa和100 h Pa等压面上北半球后冬(2月)极涡面积和前春(4月)北太平洋(20~60°N,120°E^120°W)海表温度(SST)的变化特征,揭示了二者...利用NCEP/NCAR再分析资料和NOAA海温资料,用EOF、相关分析等方法,分析了1960—2010年500 h Pa和100 h Pa等压面上北半球后冬(2月)极涡面积和前春(4月)北太平洋(20~60°N,120°E^120°W)海表温度(SST)的变化特征,揭示了二者的时空联系。结果表明:近50a来,(1)冬季北半球500 h Pa和100 h Pa极涡面积整体经历了先扩张后收缩的变化。春季北太平洋SST经历了先降低后升高的变化。其突变时间与500 h Pa极涡面积的突变时间相近,均出现在1987年,且与后冬500 h Pa大西洋欧洲大陆区(Ⅳ区)极涡面积相关更好。(2)春季北太平洋SST的EOF第一模态空间型表现为PDO,第二模态表现为三极子型,突变分别出现在1980s初期和中期。(3)北太平洋SST与500 h PaⅣ区极涡面积相关的空间分布表现为:当前期春季北太平洋中部海温异常偏高(低),南部和北部海温异常偏低(高),使得下一个冬季500 h PaⅣ区极涡面积的扩大(缩小),这种空间遥相关型对应着海温的第二模态。北太平洋海温异常以第一模态空间型居多,但是对后冬北半球极涡面积影响大的却是第二模态。(4)当前春北太平洋SST呈第二模态时,对应次年冬季中高纬度对流层温度"上冷下暖",极地东风和绕极西风环流加强,极涡面积偏大。展开更多
The physical decomposition method separates atmospheric variables into four parts, correlating each with solar radiation, land-sea distribution, and inter-annual and seasonal internal forcing, strengthening the anomal...The physical decomposition method separates atmospheric variables into four parts, correlating each with solar radiation, land-sea distribution, and inter-annual and seasonal internal forcing, strengthening the anomaly signal and increasing the correlation between variables. This method was applied to the reanalysis data from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR), to study the effects of Arctic factors (Arctic oscillation (AO) and Arctic polar vortex) on wintertime temperatures in the Northern Hemisphere and China. It was fotmd that AO effects on zonal average temperature disturbance could persist for 1 month. In the AO negative phase in wintertime, the temperatures are lower in the mid-high latitudes than in normal years, but higher in low latitudes. When the polar vortex area is bigger, the zonal average temperature is lower at 50N. Influenced mainly by meridional circulation enhancement, cold air flows from high to low latitudes; thus, the temperatures in Continental Europe and the North American continent exhibit an antiphase seesaw relationship. When the AO is in negative phase and the Arctic polar vortex larger, the temperature is lower in Siberia, but higher in Greenland and the Bering Strait. Influenced by westerly troughs and ridges, the polar air disperses mainly along the tracks of atmospheric activity centers. The AO index can be considered a predictor of wintertime temperature in China. When the AO is in negative phase or the Asian polar vortex is intensified, temperatures in Northeast China and Inner Mongolia are lower, because under the influence of the Siberia High and northeast cold vortex, the cold air flows southwards.展开更多
文摘利用1951-2013年的NCEP/NCAR月平均气温、4次/d的日平均气温、位势高度再分析资料和国家气候中心74项环流指数中的10项极涡指数,统计了近60 a 100、300、500、1 000 h Pa等压面上北半球冬季气温的演变特征以及10项极涡指数与冬季气温的相关关系,讨论了极涡面积和强度指数的变化对北半球冬季气温的影响.结果表明,以20世纪70年代为界,北半球冬季气温呈先降低后升高的变化趋势,所关注的4个等压面上,气温年代际变化均较为明显.300、500、1 000 h Pa等压面上于70年代前中期气温开始升高,而对于100 h Pa等压面上的气温,80年代初期气温突然升高,随后下降.亚洲区极涡面积指数和北美区极涡强度指数与300、500、1 000 h Pa等压面上的冬季气温呈显著相关,且相关系数均为负值.冬季气温与极涡面积和强度指数的相关系数显著的个例在1 000h Pa等压面上分布最多,随着高度的升高,显著的个例逐渐减少.极涡对2012年冬季发生在欧亚大陆和2013年冬季发生在北美洲的极端低温事件有显著影响.
文摘利用NCEP/NCAR再分析资料和NOAA海温资料,用EOF、相关分析等方法,分析了1960—2010年500 h Pa和100 h Pa等压面上北半球后冬(2月)极涡面积和前春(4月)北太平洋(20~60°N,120°E^120°W)海表温度(SST)的变化特征,揭示了二者的时空联系。结果表明:近50a来,(1)冬季北半球500 h Pa和100 h Pa极涡面积整体经历了先扩张后收缩的变化。春季北太平洋SST经历了先降低后升高的变化。其突变时间与500 h Pa极涡面积的突变时间相近,均出现在1987年,且与后冬500 h Pa大西洋欧洲大陆区(Ⅳ区)极涡面积相关更好。(2)春季北太平洋SST的EOF第一模态空间型表现为PDO,第二模态表现为三极子型,突变分别出现在1980s初期和中期。(3)北太平洋SST与500 h PaⅣ区极涡面积相关的空间分布表现为:当前期春季北太平洋中部海温异常偏高(低),南部和北部海温异常偏低(高),使得下一个冬季500 h PaⅣ区极涡面积的扩大(缩小),这种空间遥相关型对应着海温的第二模态。北太平洋海温异常以第一模态空间型居多,但是对后冬北半球极涡面积影响大的却是第二模态。(4)当前春北太平洋SST呈第二模态时,对应次年冬季中高纬度对流层温度"上冷下暖",极地东风和绕极西风环流加强,极涡面积偏大。
基金supported by the Young Scientists Fund of the Natural Science Foundation of China (Grant nos.41106165, 41106159)the Chinese Polar Environment Comprehensive Investigation & Evaluation Programmes(Grant no.CHINARE2014-04-04)+1 种基金the Project of Comprehensive Evaluation of Polar Regions on Global and Regional Climate Changes (Grant no.201105019)the National Science and Technology Support Plan of China (Grant no.2012BAC19B08)
文摘The physical decomposition method separates atmospheric variables into four parts, correlating each with solar radiation, land-sea distribution, and inter-annual and seasonal internal forcing, strengthening the anomaly signal and increasing the correlation between variables. This method was applied to the reanalysis data from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR), to study the effects of Arctic factors (Arctic oscillation (AO) and Arctic polar vortex) on wintertime temperatures in the Northern Hemisphere and China. It was fotmd that AO effects on zonal average temperature disturbance could persist for 1 month. In the AO negative phase in wintertime, the temperatures are lower in the mid-high latitudes than in normal years, but higher in low latitudes. When the polar vortex area is bigger, the zonal average temperature is lower at 50N. Influenced mainly by meridional circulation enhancement, cold air flows from high to low latitudes; thus, the temperatures in Continental Europe and the North American continent exhibit an antiphase seesaw relationship. When the AO is in negative phase and the Arctic polar vortex larger, the temperature is lower in Siberia, but higher in Greenland and the Bering Strait. Influenced by westerly troughs and ridges, the polar air disperses mainly along the tracks of atmospheric activity centers. The AO index can be considered a predictor of wintertime temperature in China. When the AO is in negative phase or the Asian polar vortex is intensified, temperatures in Northeast China and Inner Mongolia are lower, because under the influence of the Siberia High and northeast cold vortex, the cold air flows southwards.