BeiDou regional navigation satellite system (BDS) also called BeiDou-2 has been in full operation since December 27, 2012. It consists of 14 satellites, including 5 satellites in Geostationary Orbit (GEO), 5 satel...BeiDou regional navigation satellite system (BDS) also called BeiDou-2 has been in full operation since December 27, 2012. It consists of 14 satellites, including 5 satellites in Geostationary Orbit (GEO), 5 satellites in Inclined Geosynchronous Orbit (IGSO), and 4 satellites in Medium Earth Orbit (MEO). In this paper, its basic navigation and positioning performance are evaluated preliminarily by the real data collected in Beijing, including satellite visibility, Position Dilution of Precision (PDOP) value, the precision of code and carrier phase measurements, the accuracy of single point positioning and differential position- ing and ambiguity resolution (AR) performance, which are also compared with those of GPS. It is shown that the precision of BDS code and carrier phase measurements are about 33 cm and 2 mm, respectively, which are comparable to those of GPS, and the accuracy of BDS single point positioning has satisfied the design requirement. The real-time kinematic positioning is also feasible by BDS alolae in the opening condition, since its fixed rate and reliability of single-epoch dual-frequency AR is comparable to those of GPS. The accuracy of BDS carrier phase differential positioning is better than 1 cm for a very short baseline of 4.2 m and 3 cm for a short baseline of 8.2 km, which is on the same level with that of GPS. For the combined BDS and GPS, the fixed rate and reliability of single-epoch AR and the positioning accuracy are improved significantly. The accu- racy of BDS/GPS carrier phase differential positioning is about 35 and 20 % better than that of GPS for two short baseline tests in this study. The accuracy of BDS code differential positioning is better than 2.5 m. However it is worse than that of GPS, which may result from large code multipath errors of BDS GEO satellite measurements.展开更多
The irregular domain and lack of ordering make it challenging to design deep neural networks for point cloud processing.This paper presents a novel framework named Point Cloud Transformer(PCT)for point cloud learning....The irregular domain and lack of ordering make it challenging to design deep neural networks for point cloud processing.This paper presents a novel framework named Point Cloud Transformer(PCT)for point cloud learning.PCT is based on Transformer,which achieves huge success in natural language processing and displays great potential in image processing.It is inherently permutation invariant for processing a sequence of points,making it well-suited for point cloud learning.To better capture local context within the point cloud,we enhance input embedding with the support of farthest point sampling and nearest neighbor search.Extensive experiments demonstrate that the PCT achieves the state-of-the-art performance on shape classification,part segmentation,semantic segmentation,and normal estimation tasks.展开更多
By critical point theory, a new approach is provided to study the existence and multiplicity results of periodic and subharmonic solutions for difference equations. For secord-order difference equations $$\Delta ^2 x_...By critical point theory, a new approach is provided to study the existence and multiplicity results of periodic and subharmonic solutions for difference equations. For secord-order difference equations $$\Delta ^2 x_{n - 1} + f(n, x_n ) = 0,$$ some new results are obtained for the above problems when f(t, z) has superlinear growth at zero and at infinity in z.展开更多
基金sponsored by the National Natural Science Foundation of China(Grant Nos.41020144004,41374019,41104022)the National High Technology Research and Development Program of China(Grant No.2013AA122501)
文摘BeiDou regional navigation satellite system (BDS) also called BeiDou-2 has been in full operation since December 27, 2012. It consists of 14 satellites, including 5 satellites in Geostationary Orbit (GEO), 5 satellites in Inclined Geosynchronous Orbit (IGSO), and 4 satellites in Medium Earth Orbit (MEO). In this paper, its basic navigation and positioning performance are evaluated preliminarily by the real data collected in Beijing, including satellite visibility, Position Dilution of Precision (PDOP) value, the precision of code and carrier phase measurements, the accuracy of single point positioning and differential position- ing and ambiguity resolution (AR) performance, which are also compared with those of GPS. It is shown that the precision of BDS code and carrier phase measurements are about 33 cm and 2 mm, respectively, which are comparable to those of GPS, and the accuracy of BDS single point positioning has satisfied the design requirement. The real-time kinematic positioning is also feasible by BDS alolae in the opening condition, since its fixed rate and reliability of single-epoch dual-frequency AR is comparable to those of GPS. The accuracy of BDS carrier phase differential positioning is better than 1 cm for a very short baseline of 4.2 m and 3 cm for a short baseline of 8.2 km, which is on the same level with that of GPS. For the combined BDS and GPS, the fixed rate and reliability of single-epoch AR and the positioning accuracy are improved significantly. The accu- racy of BDS/GPS carrier phase differential positioning is about 35 and 20 % better than that of GPS for two short baseline tests in this study. The accuracy of BDS code differential positioning is better than 2.5 m. However it is worse than that of GPS, which may result from large code multipath errors of BDS GEO satellite measurements.
基金supported by the National Natural Science Foundation of China(Project Number 61521002)the Joint NSFC–DFG Research Program(Project Number 61761136018).
文摘The irregular domain and lack of ordering make it challenging to design deep neural networks for point cloud processing.This paper presents a novel framework named Point Cloud Transformer(PCT)for point cloud learning.PCT is based on Transformer,which achieves huge success in natural language processing and displays great potential in image processing.It is inherently permutation invariant for processing a sequence of points,making it well-suited for point cloud learning.To better capture local context within the point cloud,we enhance input embedding with the support of farthest point sampling and nearest neighbor search.Extensive experiments demonstrate that the PCT achieves the state-of-the-art performance on shape classification,part segmentation,semantic segmentation,and normal estimation tasks.
基金This work was supported by the Teaching and Research Award Program for Outstanding Young Teachers in Higher Education Institutions of MOE of Chinaby the Trans-Century Training Programme Foundation for the Talents of the State Education Commissionby the National Natural Science Foundation of China(Grant No.19831030).
文摘By critical point theory, a new approach is provided to study the existence and multiplicity results of periodic and subharmonic solutions for difference equations. For secord-order difference equations $$\Delta ^2 x_{n - 1} + f(n, x_n ) = 0,$$ some new results are obtained for the above problems when f(t, z) has superlinear growth at zero and at infinity in z.