期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
改进模糊聚类与主成分分析下的变压器故障识别 被引量:13
1
作者 薛盛炜 李川 李英娜 《河南科技大学学报(自然科学版)》 CAS 北大核心 2020年第6期39-44,50,M0004,M0005,共9页
针对经典模糊C均值聚类(FCM)对数据进行等权划分而造成聚类结果不理想的情况,首先,采用点密度加权方式,对变压器油中溶解气体分析(DGA)数据进行处理,提高样本可分性,削弱聚类时出现的等趋势划分对聚类中心以及分类结果造成的影响。然后,... 针对经典模糊C均值聚类(FCM)对数据进行等权划分而造成聚类结果不理想的情况,首先,采用点密度加权方式,对变压器油中溶解气体分析(DGA)数据进行处理,提高样本可分性,削弱聚类时出现的等趋势划分对聚类中心以及分类结果造成的影响。然后,以DGA故障数据聚类中心作为变压器标准故障谱。最后,利用施加惯性系数的主成分分析方法对待测样本进行故障识别。研究结果表明:通过点密度加权的FCM对DGA数据进行故障类型分类时,平均准确率比传统FCM算法提升了9.6%。利用上述方法对多组油浸式变压器进行识别,识别结果与实测信息均一致。 展开更多
关键词 变压器 溶解气体分析 点密度加权 主成分分析 模糊C均值聚类
下载PDF
基于网格和密度权值的模糊c均值聚类算法 被引量:1
2
作者 邱保志 卢海艇 《计算机工程与设计》 CSCD 北大核心 2010年第4期822-824,共3页
改进了基于网格和密度的模糊c均值聚类初始化方法,提出了基于网格和密度权值的模糊c均值算法。该算法在参数初始化时用网格代表点代替原算法的网格凝聚点,同时考虑到在样本空间中处于不同位置的样本点对聚类的影响不同,把密度权值作为... 改进了基于网格和密度的模糊c均值聚类初始化方法,提出了基于网格和密度权值的模糊c均值算法。该算法在参数初始化时用网格代表点代替原算法的网格凝聚点,同时考虑到在样本空间中处于不同位置的样本点对聚类的影响不同,把密度权值作为系数加入到模糊c均值聚类算法中。实验结果表明,提出的算法对提高算法的效率是有效的。 展开更多
关键词 模糊C均值聚类算法 代表点 密度权值 GDWFCM GDFCM
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部