In the paper, an improved algorithm is presented for Delaunay triangulation of the point-set in the plain. Based on the original algorithm, we propose the notion of removing circle. During the process of triangulation...In the paper, an improved algorithm is presented for Delaunay triangulation of the point-set in the plain. Based on the original algorithm, we propose the notion of removing circle. During the process of triangulation, and the circle dynamically moves, the algorithm which is simple and practical, therefore evidently accelerates the process of searching a new point, while generating a new triangle. Then it shows the effect of the algorithm in the finite element mesh.展开更多
This paper deals with the locallyβ-convex analysis that generalizes the locally convex analysis. The second separation theorem in locallyβ-convex spaces, the Minkowski theorem and the Krein-Milman theorem in theβ-c...This paper deals with the locallyβ-convex analysis that generalizes the locally convex analysis. The second separation theorem in locallyβ-convex spaces, the Minkowski theorem and the Krein-Milman theorem in theβ-convex analysis are given. Moreover, it is obtained that the U F-boundedness and the U B-boundedness in its conjugate cone are equivalent if and only if X is subcomplete.展开更多
In order to overcome the difficulties caused by singular optima, in the present paper, a new method for the solutions of structural topology optimization problems is proposed. The distinctive feature of this method is...In order to overcome the difficulties caused by singular optima, in the present paper, a new method for the solutions of structural topology optimization problems is proposed. The distinctive feature of this method is that instead of solving the original optimization problem directly, we turn to seeking the solutions of a sequence of approximated problems which are formulated by relaxing the constraints of the original problem to some extent. The approximated problem can be solved efficiently by employing the algorithms developed for sizing optimization problems because its solution is not singular. It can also be proved that when the relaxation parameter is tending to zero, the solution of the approximated problem will converge to the solution of the original problem uniformly. Numerical examples illustrate the effectiveness and validity of the present approach. Results are also compared with those obtained by traditional methods.展开更多
文摘In the paper, an improved algorithm is presented for Delaunay triangulation of the point-set in the plain. Based on the original algorithm, we propose the notion of removing circle. During the process of triangulation, and the circle dynamically moves, the algorithm which is simple and practical, therefore evidently accelerates the process of searching a new point, while generating a new triangle. Then it shows the effect of the algorithm in the finite element mesh.
文摘This paper deals with the locallyβ-convex analysis that generalizes the locally convex analysis. The second separation theorem in locallyβ-convex spaces, the Minkowski theorem and the Krein-Milman theorem in theβ-convex analysis are given. Moreover, it is obtained that the U F-boundedness and the U B-boundedness in its conjugate cone are equivalent if and only if X is subcomplete.
基金The project supported by the National Natural Science Foundation of China under project No.19572023
文摘In order to overcome the difficulties caused by singular optima, in the present paper, a new method for the solutions of structural topology optimization problems is proposed. The distinctive feature of this method is that instead of solving the original optimization problem directly, we turn to seeking the solutions of a sequence of approximated problems which are formulated by relaxing the constraints of the original problem to some extent. The approximated problem can be solved efficiently by employing the algorithms developed for sizing optimization problems because its solution is not singular. It can also be proved that when the relaxation parameter is tending to zero, the solution of the approximated problem will converge to the solution of the original problem uniformly. Numerical examples illustrate the effectiveness and validity of the present approach. Results are also compared with those obtained by traditional methods.