In this paper, some construction theorems of pluriharmonic maps into complex Grassmann manifolds axe obtained. By these, there exists a characterization of strongly isotropic pluriharmonic maps.
In this article, we present a Schwarz lemma at the boundary for pluriharmonic mappings from the unit polydisk to the unit ball, which generalizes classical Schwarz lemma for bounded harmonic functions to higher dimens...In this article, we present a Schwarz lemma at the boundary for pluriharmonic mappings from the unit polydisk to the unit ball, which generalizes classical Schwarz lemma for bounded harmonic functions to higher dimensions. It is proved that if the pluriharmonic mapping f ∈ P(Dn, BN) is C1+α at z0 ∈ ErDn with f(0) = 0 and f(z0) = ω0∈BN for any n,N ≥ 1, then there exist a nonnegative vector λf =(λ1,0,…,λr,0,…,0)T∈R2 nsatisfying λi≥1/(22 n-1) for 1 ≤ i ≤ r such that where z’0 and w’0 are real versions of z0 and w0, respectively.展开更多
基金Research supported by National Nature Science Foundation of China(10171012),Tian Yuan Foundation 10226001 and Foundation of Southeast University
文摘 In this paper, some construction theorems of pluriharmonic maps into complex Grassmann manifolds axe obtained. By these, there exists a characterization of strongly isotropic pluriharmonic maps.
基金Supported by the Natural and Science Foundation of China(61379001,61771001)
文摘In this article, we present a Schwarz lemma at the boundary for pluriharmonic mappings from the unit polydisk to the unit ball, which generalizes classical Schwarz lemma for bounded harmonic functions to higher dimensions. It is proved that if the pluriharmonic mapping f ∈ P(Dn, BN) is C1+α at z0 ∈ ErDn with f(0) = 0 and f(z0) = ω0∈BN for any n,N ≥ 1, then there exist a nonnegative vector λf =(λ1,0,…,λr,0,…,0)T∈R2 nsatisfying λi≥1/(22 n-1) for 1 ≤ i ≤ r such that where z’0 and w’0 are real versions of z0 and w0, respectively.