合成了[PtAX_2](其中 A 为顺式-1.3-环戊二胺;X=Cl,Br,I,Ac—Cl,NO_3,1/2Mal,1/2Ox,1/2SO_4,1/2C_3H_6(COO_2)和[PtA(OH)_2X′2](X′=Cl,Ac—Cl)共十一种未知化合物,并用红外光谱,热失重差热等方法进行了表征,测定了它们在水和乙酸乙酯...合成了[PtAX_2](其中 A 为顺式-1.3-环戊二胺;X=Cl,Br,I,Ac—Cl,NO_3,1/2Mal,1/2Ox,1/2SO_4,1/2C_3H_6(COO_2)和[PtA(OH)_2X′2](X′=Cl,Ac—Cl)共十一种未知化合物,并用红外光谱,热失重差热等方法进行了表征,测定了它们在水和乙酸乙酯中的溶解度及对小鼠S-180肉瘤和 L-1210白血病的押制能力,发现[Pt A(Ac-Cl_2]对小鼠 S-180肉瘤有强烈的抑制作用。对配合物的抗癌活性与其脂溶性和水溶性关系进行了讨论。展开更多
The PdPtVO_(x)/CeO_(2)-ZrO_(2)(PdPtVO_(x)/CZO)catalysts were obtained by using different approaches,and their physical and chemical properties were determined by various techniques.Catalytic activities of these materi...The PdPtVO_(x)/CeO_(2)-ZrO_(2)(PdPtVO_(x)/CZO)catalysts were obtained by using different approaches,and their physical and chemical properties were determined by various techniques.Catalytic activities of these materials in the presence of H_(2)O or SO_(2)were evaluated for the oxidation of ethylbenzene(EB).The PdPtVO_(x)/CZO sample exhibited high catalytic activity,good hydrothermal stability,and reversible sulfur dioxide-poisoning performance,over which the specific reaction rate at 160℃,turnover frequency at 160℃(TOF_(Pd or Pt)),and apparent activation energy were 72.6 mmol/(g_(Pt)·sec)or 124.2 mmol/(g_(Pd)·sec),14.2 sec^(-1)(TOF_(Pt))or 13.1 sec^(-1)(TOF_(Pd)),and 58 k J/mol,respectively.The large EB adsorption capacity,good reducibility,and strong acidity contributed to the good catalytic performance of PdPtVO_(x)/CZO.Catalytic activity of PdPtVO_(x)/CZO decreased when 50 ppm SO_(2)or(1.0 vol.%H_(2)O+50 ppm SO_(2))was added to the feedstock,but was gradually restored to its initial level after the SO_(2)was cut off.The good reversible sulfur dioxide-resistant performance of PdPtVO_(x)/CZO was associated with the facts:(i)the introduction of SO_(2)leads to an increase in surface acidity;(ii)V can adsorb and activate SO_(2),thus accelerating formation of the SO_(x)^(2-)(x=3 or 4)species at the V and CZO sites,weakening the adsorption of sulfur species at the PdPt active sites,and hence protecting the PdPt active sites to be not poisoned by SO_(2).EB oxidation over PdPtVO_(x)/CZO might take place via the route of EB→styrene→phenyl methyl ketone→benzaldehyde→benzoic acid→maleic anhydride→CO_(2)and H_(2)O.展开更多
基金supported by the National Natural Science Foundation Committee of China-Liaoning Provincial People’s Government Joint Fund(No.U1908204)the National Natural Science Foundation of China(21976009)+2 种基金the National Key R&D Program of China(Nos.2022YFB3506200 and 2022YFB3504100)the Beijing Natural Science Foundation(J210006)the R&D Program of Beijing Municipal Education Commisson(No.KZ202210005011)。
文摘The PdPtVO_(x)/CeO_(2)-ZrO_(2)(PdPtVO_(x)/CZO)catalysts were obtained by using different approaches,and their physical and chemical properties were determined by various techniques.Catalytic activities of these materials in the presence of H_(2)O or SO_(2)were evaluated for the oxidation of ethylbenzene(EB).The PdPtVO_(x)/CZO sample exhibited high catalytic activity,good hydrothermal stability,and reversible sulfur dioxide-poisoning performance,over which the specific reaction rate at 160℃,turnover frequency at 160℃(TOF_(Pd or Pt)),and apparent activation energy were 72.6 mmol/(g_(Pt)·sec)or 124.2 mmol/(g_(Pd)·sec),14.2 sec^(-1)(TOF_(Pt))or 13.1 sec^(-1)(TOF_(Pd)),and 58 k J/mol,respectively.The large EB adsorption capacity,good reducibility,and strong acidity contributed to the good catalytic performance of PdPtVO_(x)/CZO.Catalytic activity of PdPtVO_(x)/CZO decreased when 50 ppm SO_(2)or(1.0 vol.%H_(2)O+50 ppm SO_(2))was added to the feedstock,but was gradually restored to its initial level after the SO_(2)was cut off.The good reversible sulfur dioxide-resistant performance of PdPtVO_(x)/CZO was associated with the facts:(i)the introduction of SO_(2)leads to an increase in surface acidity;(ii)V can adsorb and activate SO_(2),thus accelerating formation of the SO_(x)^(2-)(x=3 or 4)species at the V and CZO sites,weakening the adsorption of sulfur species at the PdPt active sites,and hence protecting the PdPt active sites to be not poisoned by SO_(2).EB oxidation over PdPtVO_(x)/CZO might take place via the route of EB→styrene→phenyl methyl ketone→benzaldehyde→benzoic acid→maleic anhydride→CO_(2)and H_(2)O.