Salmonella Corvallis ST1541 has recently emerged as a globally disseminated pathogenic strain that often causes severe food-borne infections.Unlike most pandemic serotypes of Salmonella,the ST1541 strains harbored Col...Salmonella Corvallis ST1541 has recently emerged as a globally disseminated pathogenic strain that often causes severe food-borne infections.Unlike most pandemic serotypes of Salmonella,the ST1541 strains harbored ColRNA1 plasmids that contain qnr-like determinants known to be responsible for the increasing incidence of ciprofloxacin-resistant food-borne Salmonella infections.In this study,we conducted a genomic analysis of a global collection of 388 S.Corvallis ST1541 strains collected within a twenty-year period.We investigated the genetic characteristics of plasmid-mediated quinolone resistance(PMQR)plasmids harbored by these S.Corvallis strains,established a mini-mum spanning tree(MST)to determine the temporal and spatial distribution of the top 10 MST clusters,inferred a time-phylogenies for the major sub-lineages and traced the routes of international dissemination of this serotype strains.Bayesian algorithm predicted that UK might be the origin of S.Corvallis strains currently prevalent in various countries.This idea is supported by the observation of the emergence of intercontinental-disseminated clonal strains and extensive transmission of the extensive-drug resistance(XDR)-encoding plasmid pSA663.This study there-fore provides valuable insight into the evolution of globally transmitted S.Corvallis strains and suggests a need to strengthen cooperation between different countries to control the dissemination of these drug-resistant bacteria.展开更多
Carbapenemase-producing Enterobacteriaceae(CPE) isolates are recognized as one of the most severe threats to public health. However, the population structure and genetic characteristics of CPE isolates among bloodstre...Carbapenemase-producing Enterobacteriaceae(CPE) isolates are recognized as one of the most severe threats to public health. However, the population structure and genetic characteristics of CPE isolates among bloodstream infections(BSIs) are largely unknown. To address this knowledge gap, in this study,we included patients with clinically significant BSIs due to Enterobacterales isolates, recruited from 26 sentinel hospitals in China(2014–2015). CPE isolates were microbiologically and genomically characterized,including their susceptibility profiles, molecular typing, phylogenetic features, and genetic context analysis of carbapenemase-encoding genes. Of the 2569 BSI Enterobacterales isolates enrolled, 42(1.6%) were carbapenemase-positive. Moreover, among the 2242 investigated isolates, 1111(49.6%) extendedspectrum β-lactamase(ESBL)-producing isolates were identified in Escherichia coli(E. coli), Klebsiella pneumoniae(K. pneumoniae), Proteus mirabilis(P. mirabilis), and Klebsiella oxytoca. Whole genome sequencing analysis showed the clonal spread of K. pneumoniae carbapenemase(KPC)-2-producing K. pneumoniae sequence type(ST) 11 and New Delhi metallo-β-lactamase(NDM)-5-producing E. coli ST167 in our collection. Plasmid analysis revealed that carbapenemase-encoding genes were located on multiple plasmids. A high prevalence of biofilm-encoding type 3 fimbriae clusters and yesiniabactin-associated genes was observed in K. pneumoniae isolates. This work demonstrates the high prevalence of ESBLs and the wide dissemination of CPE among BSI isolates in China, which represent real clinical threats. Moreover, our findings first illustrate a more comprehensive genome scenario of CPE isolates among BSIs. The clonal spread of KPC-2-producing K. pneumoniae ST11 and NDM-5-producing E. coli ST167 needs to be closely monitored.展开更多
基金supported by the Key Research and Development Program of Guangdong Province(Grant number,2022B1111040002)the Collaborative Research Fund from Research Grant Council of the Government of Hong Kong SAR(Grant numbers,C7147-20G,C7003-20G).
文摘Salmonella Corvallis ST1541 has recently emerged as a globally disseminated pathogenic strain that often causes severe food-borne infections.Unlike most pandemic serotypes of Salmonella,the ST1541 strains harbored ColRNA1 plasmids that contain qnr-like determinants known to be responsible for the increasing incidence of ciprofloxacin-resistant food-borne Salmonella infections.In this study,we conducted a genomic analysis of a global collection of 388 S.Corvallis ST1541 strains collected within a twenty-year period.We investigated the genetic characteristics of plasmid-mediated quinolone resistance(PMQR)plasmids harbored by these S.Corvallis strains,established a mini-mum spanning tree(MST)to determine the temporal and spatial distribution of the top 10 MST clusters,inferred a time-phylogenies for the major sub-lineages and traced the routes of international dissemination of this serotype strains.Bayesian algorithm predicted that UK might be the origin of S.Corvallis strains currently prevalent in various countries.This idea is supported by the observation of the emergence of intercontinental-disseminated clonal strains and extensive transmission of the extensive-drug resistance(XDR)-encoding plasmid pSA663.This study there-fore provides valuable insight into the evolution of globally transmitted S.Corvallis strains and suggests a need to strengthen cooperation between different countries to control the dissemination of these drug-resistant bacteria.
基金the financial support of the National Key Research and Development Program of China (2017YFC1200203 and 2016YFD0501105)the Mega-projects of Science Research of China (2018ZX10733402-004 and 2018ZX10712001-005)+2 种基金the National Natural Science Foundation of China (81741098 and 81711530049)the Zhejiang Provincial Key Research and Development Program (2015C03032)the Zhejiang Provincial Natural Science Foundation of China (LY17H190003)
文摘Carbapenemase-producing Enterobacteriaceae(CPE) isolates are recognized as one of the most severe threats to public health. However, the population structure and genetic characteristics of CPE isolates among bloodstream infections(BSIs) are largely unknown. To address this knowledge gap, in this study,we included patients with clinically significant BSIs due to Enterobacterales isolates, recruited from 26 sentinel hospitals in China(2014–2015). CPE isolates were microbiologically and genomically characterized,including their susceptibility profiles, molecular typing, phylogenetic features, and genetic context analysis of carbapenemase-encoding genes. Of the 2569 BSI Enterobacterales isolates enrolled, 42(1.6%) were carbapenemase-positive. Moreover, among the 2242 investigated isolates, 1111(49.6%) extendedspectrum β-lactamase(ESBL)-producing isolates were identified in Escherichia coli(E. coli), Klebsiella pneumoniae(K. pneumoniae), Proteus mirabilis(P. mirabilis), and Klebsiella oxytoca. Whole genome sequencing analysis showed the clonal spread of K. pneumoniae carbapenemase(KPC)-2-producing K. pneumoniae sequence type(ST) 11 and New Delhi metallo-β-lactamase(NDM)-5-producing E. coli ST167 in our collection. Plasmid analysis revealed that carbapenemase-encoding genes were located on multiple plasmids. A high prevalence of biofilm-encoding type 3 fimbriae clusters and yesiniabactin-associated genes was observed in K. pneumoniae isolates. This work demonstrates the high prevalence of ESBLs and the wide dissemination of CPE among BSI isolates in China, which represent real clinical threats. Moreover, our findings first illustrate a more comprehensive genome scenario of CPE isolates among BSIs. The clonal spread of KPC-2-producing K. pneumoniae ST11 and NDM-5-producing E. coli ST167 needs to be closely monitored.